Diverse roles of miR-29 in cancer (Review)
- Authors:
- Hesong Jiang
- Guang Zhang
- Jun-Hua Wu
- Chun-Ping Jiang
-
Affiliations: Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China, Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China - Published online on: February 20, 2014 https://doi.org/10.3892/or.2014.3036
- Pages: 1509-1516
This article is mentioned in:
Abstract
Siegel R, Naishadham D and Jemal A: Cancer Statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar | |
Cantley LC, Auger KR, Carpenter C, et al: Oncogenes and signal transduction. Cell. 64:281–302. 1991. View Article : Google Scholar | |
Levine AJ, Momand J and Finlay CA: The p53 tumour suppressor gene. Nature. 351:453–456. 1991. View Article : Google Scholar : PubMed/NCBI | |
Chen K and Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 8:93–103. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI | |
He L, Thomson JM, Hemann MT, et al: A microRNA polycistron as a potential human oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI | |
He L, He XY, Lim LP, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:U1130–U1116. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ugalde AP, Ramsay AJ, de la Rosa J, et al: Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J. 30:2219–2232. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Wang ZM, Hu Y, et al: miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep. 27:1660–1668. 2012.PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Boon RA, Seeger T, Heydt S, et al: MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res. 109:1115–1119. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maurer B, Stanczyk J, Jungel A, et al: MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62:1733–1743. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li PF, Guo W, Du LL, et al: microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci. 124:27–40. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou QQ, Souba WW, Croce CM and Verne GN: MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 59:775–784. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roderburg C, Urban GW, Bettermann K, et al: Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 53:209–218. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Rooij E, Sutherland LB, Thatcher JE, et al: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 105:13027–13032. 2008.PubMed/NCBI | |
Wang B, Komers R, Carew R, et al: Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 23:252–265. 2012. | |
Ye YM, Hu ZY, Lin Y, Zhang CF and Perez-Polo JR: Downregulation of microRNA-29 by antisense inhibitors and a PPAR-γ agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res. 87:535–544. 2010.PubMed/NCBI | |
Chang TC, Yu DN, Lee YS, et al: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mourelatos Z, Dostie J, Paushkin S, et al: miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16:720–728. 2002. View Article : Google Scholar : PubMed/NCBI | |
Landgraf P, Rusu M, Sheridan R, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yanaihara N, Caplen N, Bowman E, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fabbri M, Garzon R, Cimmino A, et al: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 104:15805–15810. 2007. View Article : Google Scholar : PubMed/NCBI | |
Plaisier CL, Pan M and Baliga NS: A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res. 22:2302–2314. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cortez MA, Nicoloso MS, Shimizu M, et al: miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer. 49:981–990. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Cheung IY, Guo HF and Cheung NKV: MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69:6275–6281. 2009. View Article : Google Scholar : PubMed/NCBI | |
Namløs HM, Meza-Zepeda LA, Barøy T, et al: Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One. 7:e480862012.PubMed/NCBI | |
Wang XH, Tang S, Le SY, et al: Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PloS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Qian JX, Yi HL, et al: The microRNA-29 plays a central role in osteosarcoma pathogenesis and progression. Mol Biol. 46:622–627. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ratert N, Meyer HA, Jung M, et al: Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS One. 7:e393092012. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Zhang HH, He HD, et al: Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol. 42:95–102. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ru P, Steele R, Newhall P, Phillips NJ, Toth K and Ray RB: miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther. 11:1166–1173. 2012. View Article : Google Scholar : PubMed/NCBI | |
Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM and Cohn DE: The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 112:55–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Flavin R, Smyth P, Barrett C, et al: miR-29b expression is associated with disease-free survival in patients with ovarian serous carcinoma. Int J Gynecol Cancer. 19:641–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hiroki E, Akahira J, Suzuki F, et al: Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 101:241–249. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heinzelmann J, Henning B, Sanjmyatav J, et al: Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. 29:367–373. 2011. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Garofalo M, Martelli MP, et al: Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 105:3945–3950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Volinia S, Liu CG, et al: MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 111:3183–3189. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Ferracin M, Cimmino A, et al: A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhao JJ, Lin JH, Lwin T, et al: microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zanette DL, Rivadavia F, Molfetta GA, et al: miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 40:1435–1440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sand M, Skrygan M, Sand D, et al: Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 167:847–855. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sengupta S, den Boon JA, Chen IH, et al: MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA. 105:5874–5878. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Xiang JJ, Wu MH, et al: Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS One. 7:e463672012. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Wang C, Lu ZH, Guo L and Ge QY: Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta. 413:1058–1065. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pass HI, Goparaju C, Ivanov S, et al: hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. Cancer Res. 70:1916–1924. 2010. | |
Fang C, Zhu DX, Dong HJ, et al: Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol. 91:553–559. 2012. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Saito Y and Hibi T: MicroRNAs in Gastric Cancer. Springer; New York: 2011 | |
Ding DP, Chen ZL, Zhao XH, et al: miR-29c induces cell cycle arrest in esophageal squamous cell carcinoma by modulating cyclin E expression. Carcinogenesis. 32:1025–1032. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng XZ, Zheng TS, Chen X, et al: microRNA expression alteration after arsenic trioxide treatment in HepG-2 cells. J Gastroenterol Hepatol. 26:186–193. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiong YJ, Fang JH, Yun JP, et al: Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 51:836–845. 2010.PubMed/NCBI | |
Mott JL, Kobayashi S, Bronk SF and Gores GJ: mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 26:6133–6140. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Huang D, Ni S, Peng Z, Sheng W and Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 127:118–126. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang LG and Gu J: Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 36:E61–E67. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sampath D, Liu CM, Vasan K, et al: Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 119:1162–1172. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang XW, Zhao XH, Fiskus W, et al: Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell. 22:506–523. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW and Fernandez-Zapico ME: Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, Hedgehog, and NF-kappaB. J Cell Biochem. 110:1155–1164. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mishra A, Liu SJ, Sams GH, et al: Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell. 22:645–655. 2012. View Article : Google Scholar | |
Wang H, Garzon R, Sun H, et al: NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 14:369–381. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eyholzer M, Schmid S, Wilkens L, Mueller BU and Pabst T: The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer. 103:275–284. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schmitt MJ, Philippidou D, Reinsbach SE, et al: Interferon-gamma-induced activation of signal transducer and activator of transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal. 10:412012. View Article : Google Scholar : PubMed/NCBI | |
Chou J, Lin JH, Brenot A, Kim JW, Provot S and Werb Z: GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 15:201–213. 2013. View Article : Google Scholar : PubMed/NCBI | |
Melo SA and Kalluri R: miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol. 15:139–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Muniyappa MK, Dowling P, Henry M, et al: MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer. 45:3104–3118. 2009. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Liu SJ, Fabbri M, et al: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 113:6411–6418. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li G, Zhao JF, Peng XJ, Liang J, Deng X and Chen YX: The mechanism involved in the loss of PTEN expression in NSCLC tumor cells. Biochem Biophys Res Commun. 418:547–552. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang XW, Zhao JF, Huang JH, Tang HH, Yu SY and Chen YX: The regulatory roles of miRNA and methylation on oncogene and tumor suppressor gene expression in pancreatic cancer cells. Biochem Biophys Res Commun. 425:51–57. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bargaje R, Gupta S, Sarkeshik A, et al: Identification of novel targets for miR-29a using miRNA proteomics. PLoS One. 7:e432432012. View Article : Google Scholar : PubMed/NCBI | |
Park SY, Lee JH, Ha M, Nam JW and Kim VN: miR-29 miRNAs activate p53 by targeting p85a and CDC42. Nat Struct Mol Biol. 16:23–29. 2009. View Article : Google Scholar : PubMed/NCBI | |
Garzon R, Heaphy CEA, Havelange V, et al: MicroRNA 29b functions in acute myeloid leukemia. Blood. 114:5331–5341. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pekarsky Y, Santanam U, Cimmino A, et al: Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 66:11590–11593. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rothschild SI, Tschan MP, Federzoni EA, et al: MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene. 31:4221–4232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Gao C, Zhuang JL, Ding C and Wang Y: A combined approach identifies three mRNAs that are down-regulated by microRNA-29b and promote invasion ability in the breast cancer cell line MCF-7. J Cancer Res Clin Oncol. 138:2127–2136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL and Richer JK: Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol. 355:15–24. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee TY, Ezelle HJ, Venkataraman T, Lapidus RG, Scheibner KA and Hassel BA: Regulation of human RNase-L by the miR-29 family reveals a novel oncogenic role in chronic myelogenous leukemia. J Interferon Cytokine Res. 33:34–42. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gebeshuber CA, Zatloukal K and Martinez J: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 10:400–405. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang JH, Zhou HC, Zeng CX, et al: MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 54:1729–1740. 2011. View Article : Google Scholar : PubMed/NCBI | |
Price KJ, Tsykin A, Giles KM, et al: Matrigel basement membrane matrix influences expression of microRNAs in cancer cell lines. Biochem Biophys Res Commun. 427:343–348. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang XS, Yang GH, et al: miR-29a and miR-142–3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 39:2713–2722. 2012. | |
Li H, Solomon E, Muggy SD, Sun DQ and Zolkiewska A: Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem. 286:21500–21510. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhi F, Zhou GX, Wang SN, et al: A microRNA expression signature predicts meningioma recurrence. Int J Cancer. 132:128–136. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weissmann-Brenner A, Kushnir M, Yanai GL, et al: Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol. 40:2097–2103. 2012.PubMed/NCBI | |
Blum W, Garzon R, Klisovic RB, et al: Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA. 107:7473–7478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Blum W, Schwind S, Tarighat SS, et al: Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood. 119:6025–6031. 2012. View Article : Google Scholar : PubMed/NCBI | |
Visone R, Rassenti LZ, Veronese A, et al: Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood. 114:3872–3879. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu CL, Wang YG, Kuai WX, Sun XZ, Chen HP and Hong Z: Prognostic value of miR-29a expression in pediatric acute myeloid leukemia. Clin Biochem. 46:49–53. 2013. View Article : Google Scholar : PubMed/NCBI |