Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review)
- Authors:
- Hilda Jiménez-Wences
- Oscar Peralta-Zaragoza
- Gloria Fernández-Tilapa
-
Affiliations: Clinical Research Laboratory, Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Colonia Haciendita, Chilpancingo, Guerrero 39070, Mexico, Direction of Chronic Infections and Cancer, Research Center for Infectious Diseases, National Institute of Public Health, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca, Morelos 62100, Mexico - Published online on: April 16, 2014 https://doi.org/10.3892/or.2014.3142
- Pages: 2467-2476
-
Copyright: © Jiménez-Wences et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Wang X, Tang S, Le SY, et al: Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI | |
Wilting SM, van Boerdonk RA, Henken FE, et al: Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer. 9:1672010. View Article : Google Scholar : PubMed/NCBI | |
Yang HJ: Aberrant DNA methylation in cervical carcinogenesis. Chin J Cancer. 32:42–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Faridi R, Zahra A, Khan K and Idrees M: Oncogenic potential of human papillomavirus (HPV) and its relation with cervical cancer. Virol J. 8:2692011. View Article : Google Scholar : PubMed/NCBI | |
Lui WO, Pourmand N, Patterson BK and Fire A: Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 67:6031–6043. 2007. View Article : Google Scholar : PubMed/NCBI | |
Whiteside MA, Siegel EM and Unger ER: Human papillomavirus and molecular considerations for cancer risk. Cancer. 113(Supp 10): 2981–2994. 2008. View Article : Google Scholar : PubMed/NCBI | |
Saavedra KP, Brebi PM and Roa JC: Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clin Epigenetics. 4:132012. View Article : Google Scholar : PubMed/NCBI | |
Lechner M, Fenton T, West J, et al: Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med. 5:152013. View Article : Google Scholar : PubMed/NCBI | |
Chaiwongkot A, Vinokurova S, Pientong C, et al: Differential methylation of E2 binding sites in episomal and integrated HPV 16 genomes in preinvasive and invasive cervical lesions. Int J Cancer. 132:2087–2094. 2013. View Article : Google Scholar : PubMed/NCBI | |
Das P, Thomas A, Mahantshetty U, Shrivastava SK, Deodhar K and Mulherkar R: HPV genotyping and site of viral integration in cervical cancers in Indian women. PLoS One. 7:e410122012. View Article : Google Scholar : PubMed/NCBI | |
Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP and Khan SA: Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene. 27:2575–2582. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zheng ZM and Wang X: Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta. 1809.668–677. 2011.PubMed/NCBI | |
Rao Q, Shen Q, Zhou H, Peng Y, Li J and Lin Z: Aberrant microRNA expression in human cervical carcinomas. Med Oncol. 29:1242–1248. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu J, Yuan C, Cui B, Zou X and Qiao Y: High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res. 38:1730–1736. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dreher A, Rossing M, Kaczkowski B, Nielsen FC and Norrild B: Differential expression of cellular microRNAs in HPV-11 transfected cells. An analysis by three different array platforms and qRT-PCR. Biochem Biophys Res Commun. 403:357–362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sato F, Tsuchiya S, Meltzer SJ and Shimizu K: MicroRNAs and epigenetics. FEBS J. 278:1598–1609. 2011. View Article : Google Scholar : PubMed/NCBI | |
Colón-López V, Ortiz AP and Palefsky J: Burden of human papillomavirus infection and related comorbidities in men: implications for research, disease prevention and health promotion among Hispanic men. P R Health Sci J. 29:232–240. 2010.PubMed/NCBI | |
Chaturvedi AK: Beyond cervical cancer: burden of other HPV-related cancers among men and women. J Adolesc Health. 46:S20–S26. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Ma D and Zhao S: DNA methylation changes in cervical cancers. Methods Mol Biol. 863:155–176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Botezatu A, Goia-Rusanu CD, Iancu IV, et al: Quantitative analysis of the relationship between microRNA-124a, -34b and -203 gene methylation and cervical oncogenesis. Mol Med Rep. 4:121–128. 2011.PubMed/NCBI | |
Sasagawa T, Takagi H and Makinoda S: Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother. 18:807–815. 2012. View Article : Google Scholar : PubMed/NCBI | |
Correa de Adjounian MF, Adjounian H and Adjounian SH: Silenciamiento de genes mediante RNA interferencia: consideraciones sobre el mecanismo y diseño de los sistemas efectores. AVFT. 27:22–25. 2008. | |
Rouhi A, Mager DL, Humphries RK and Kuchenbauer F: MiRNAs, epigenetics, and cancer. Mamm Genome. 19:517–525. 2008. View Article : Google Scholar | |
Bock C: Epigenetic biomarker development. Epigenomics. 1:99–110. 2009. View Article : Google Scholar | |
Yang N, Coukos G and Zhang L: MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer. 122:963–968. 2008. View Article : Google Scholar : PubMed/NCBI | |
Valeri N, Vannini I, Fanini F, Calore F, Adair B and Fabbri M: Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome. 20:573–580. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich M: DNA hypomethylation in cancer cells. Epigenomics. 1:239–259. 2009. View Article : Google Scholar | |
Henken FE, Wilting SM, Overmeer RM, et al: Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. Br J Cancer. 97:1457–1464. 2007. View Article : Google Scholar : PubMed/NCBI | |
Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Serra P and Esteller M: DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 31:1609–1622. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saito Y and Jones PA: Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 5:2220–2222. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lujambio A and Esteller M: CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 6:1455–1459. 2007. View Article : Google Scholar : PubMed/NCBI | |
Toyota M, Suzuki H, Sasaki Y, et al: Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 68:4123–4132. 2008.PubMed/NCBI | |
Huang YW, Liu JC, Deatherage DE, et al: Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 69:9038–9046. 2009.PubMed/NCBI | |
Leonard SM, Wei W, Collins SI, et al: Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinogenesis. 33:1286–1293. 2012. View Article : Google Scholar | |
Missaoui N, Hmissa S, Dante R and Frappart L: Global DNA methylation in precancerous and cancerous lesions of the uterine cervix. Asian Pac J Cancer Prev. 11:1741–1744. 2010.PubMed/NCBI | |
Kalantari M, Calleja-Macias IE, Tewari D, et al: Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol. 78:12762–12772. 2004. View Article : Google Scholar : PubMed/NCBI | |
Burgers WA, Blanchon L, Pradhan S, et al: Viral oncoproteins target the DNA methyltransferases. Oncogene. 26:1650–1655. 2007. View Article : Google Scholar : PubMed/NCBI | |
Au Yeung CL, Tsang WP, Tsang TY, Co NN, Yau PL and Kwok TT: HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol Rep. 24:1599–1604. 2010.PubMed/NCBI | |
McCabe MT, Davis JN and Day ML: Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res. 65:3624–3632. 2005. View Article : Google Scholar : PubMed/NCBI | |
Richards KL, Zhang B, Baggerly KA, et al: Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS One. 4:e49412009. View Article : Google Scholar | |
Lin RK, Wu CY, Chang JW, et al: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 70:5807–5817. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin-Tao W, Ling D, Shi-Wen J, et al: Folate deficiency and aberrant expression of DNA methyltransferase 1 were associated with cervical cancerization. Curr Pharm Des. Jul 19–2013.(Epub ahead of print). | |
Nambaru L, Meenakumari B, Swaminathan R and Rajkumar T: Prognostic significance of HPV physical status and integration sites in cervical cancer. Asian Pac J Cancer Prev. 10:355–360. 2009.PubMed/NCBI | |
Turan T, Kalantari M, Cuschieri K, Cubie HA, Skomedal H and Bernard HU: High-throughput detection of human papillomavirus-18 L1 gene methylation, a candidate biomarker for the progression of cervical neoplasia. Virology. 361:185–193. 2007. View Article : Google Scholar : PubMed/NCBI | |
Davis-Dusenbery BN and Hata A: MicroRNA in cancer: the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer. 1:1100–1114. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shivdasani RA: MicroRNAs: regulators of gene expression and cell differentiation. Blood. 108:3646–3653. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cho WC: OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 6:602007. View Article : Google Scholar : PubMed/NCBI | |
Pavicic W, Perkiö E, Kaur S, et al: Altered methylation at microRNA-associated CpG islands in hereditary and sporadic carcinomas: a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach. Mol Med. 17:726–735. 2011. View Article : Google Scholar | |
Shen Y, Li Y, Ye F, et al: Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues. Exp Mol Med. 43:358–366. 2011. View Article : Google Scholar : PubMed/NCBI | |
Greco D, Kivi N, Qian K, et al: Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One. 6:e216462011. View Article : Google Scholar : PubMed/NCBI | |
So AY, Jung JW, Lee S, Kim HS and Kang KS: DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 6:e195032011. View Article : Google Scholar : PubMed/NCBI | |
Ferreira HJ, Heyn H, Moutinho C, et al: CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biol. 9:881–890. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hata A and Davis BN: Control of microRNA biogenesis by TGFβ signaling pathway - a novel role of Smads in the nucleus. Cytokine Growth Factor Rev. 20:517–521. 2009. | |
Fazi F and Nervi C: MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res. 79:553–561. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Wang Y, Teng M, Zhang D, Li L and Liu Y: Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferon γ-stimulated HeLa cells. PLoS One. 5:e117942010.PubMed/NCBI | |
Bandres E, Agirre X, Bitarte N, et al: Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 125:2737–2743. 2009. View Article : Google Scholar : PubMed/NCBI | |
Siomi H and Siomi MC: Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 38:323–332. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heneghan HM, Miller N, Lowery AJ, Sweeney KJ and Kerin MJ: MicroRNAs as novel biomarkers for breast cancer. J Oncol. 2009:9502012009.PubMed/NCBI | |
Chen J, Yao D, Li Y, et al: Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int J Mol Med. 32:557–567. 2013.PubMed/NCBI | |
Gocze K, Gombos K, Juhasz K, Kovacs K, Kajtar B, Benczik M, et al: Unique microRNA expression profiles in cervical cancer. Anticancer Res. 33:2561–2567. 2013.PubMed/NCBI | |
Wilting SM, Snijders PJ, Verlaat W, et al: Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene. 32:106–116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Lin JX, Yu YH, Zhang MY, Wang HY and Zheng M: Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix. PLoS One. 7:e337622012. View Article : Google Scholar : PubMed/NCBI | |
Cheung TH, Man KN, Yu MY, et al: Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle. 11:2876–2884. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma D, Zhang YY, Guo YL, Li ZJ and Geng L: Profiling of microRNA-mRNA reveals roles of microRNAs in cervical cancer. Chin Med J. 125:4270–4276. 2012.PubMed/NCBI | |
Pereira PM, Marques JP, Soares AR, Carreto L and Santos MA: MicroRNA expression variability in human cervical tissues. PLoS One. 5:e117802010. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Schwarz JK, Lewis JS Jr, et al: A microRNA expression signature for cervical cancer prognosis. Cancer Res. 70:1441–1448. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Choi CH, Choi JJ, et al: Altered microRNA expression in cervical carcinomas. Clin Cancer Res. 14:2535–2542. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yao T, Rao Q, Liu L, et al: Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer. Virol J. 10:1752013. View Article : Google Scholar : PubMed/NCBI | |
Wilting SM, Verlaat W, Jaspers A, et al: Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics. 8:220–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kalimutho M, Di Cecilia S, Del Vecchio Blanco G, et al: Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 104:1770–1778. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vogt M, Munding J, Grüner M, et al: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458:313–322. 2011.PubMed/NCBI | |
Zhang Y, Wang X, Xu B, et al: Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep. 30:1976–1984. 2013.PubMed/NCBI | |
Zhu A, Xia J, Zuo J, et al: MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol. 29:2701–2709. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsai KW, Wu CW, Hu LY, et al: Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 129:2600–2610. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsai KW, Liao YL, Wu CW, et al: Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics. 6:1189–1197. 2011.PubMed/NCBI | |
Kim K, Lee HC, Park JL, et al: Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 6:740–751. 2011. | |
Guo LH, Li H, Wang F, Yu J and He JS: The tumor suppressor roles of miR-433 and miR-127 in gastric cancer. Int J Mol Sci. 14:14171–14184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Guo Y, Song H, et al: MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene. 518:351–359. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yan-Fang T, Jian N, Jun L, et al: The promoter of miR-663 is hypermethylated in Chinese pediatric acute myeloid leukemia (AML). BMC Med Genet. 14:742013. View Article : Google Scholar : PubMed/NCBI | |
Köhler CU, Bryk O, Meier S, et al: Analyses in human urothelial cells identify methylation of miR-152, miR-200b and miR-10a genes as candidate bladder cancer biomarkers. Biochem Biophys Res Commun. 438:48–53. 2013.PubMed/NCBI | |
Datta J, Kutay H, Nasser MW, et al: Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 68:5049–5058. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jung CJ, Iyengar S, Blahnik KR, et al: Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS One. 6:e277402011. View Article : Google Scholar : PubMed/NCBI | |
He Y, Cui Y, Wang W, et al: Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia. 13:841–853. 2011.PubMed/NCBI | |
Zhang Y, Yan LX, Wu QN, et al: miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res. 71:3552–3562. 2011. View Article : Google Scholar : PubMed/NCBI | |
Augoff K, McCue B, Plow EF and Sossey-Alaoui K: miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 11:52012. View Article : Google Scholar : PubMed/NCBI | |
Vrba L, Muñoz-Rodríguez JL, Stampfer MR and Futscher BW: miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 8:e543982013. View Article : Google Scholar : PubMed/NCBI | |
Rauhala HE, Jalava SE, Isotalo J, et al: miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer. 127:1363–1372. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hulf T, Sibbritt T, Wiklund ED, et al: Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene. 32:2891–2899. 2013. View Article : Google Scholar : PubMed/NCBI | |
Formosa A, Lena AM, Markert EK, et al: DNA methylation silences miR-132 in prostate cancer. Oncogene. 32:127–134. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heller G, Weinzierl M, Noll C, et al: Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res. 18:1619–1629. 2012.PubMed/NCBI | |
Incoronato M, Urso L, Portela A, et al: Epigenetic regulation of miR-212 expression in lung cancer. PLoS One. 6:e277222011. View Article : Google Scholar : PubMed/NCBI | |
Kitano K, Watanabe K, Emoto N, et al: CpG island methylation of microRNAs is associated with tumor size and recurrence of non-small-cell lung cancer. Cancer Sci. 102:2126–2131. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Chen Z, Gao Y, et al: DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell lung cancer. Cancer Biol Ther. 11:490–496. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong KY1, Liang R, So CC, Jin DY, Costello JF and Chim CS: Epigenetic silencing of MIR203 in multiple myeloma. Br J Haematol. 154:569–578. 2011.PubMed/NCBI |