Downregulation of tumor suppressor gene ribonuclease T2 and gametogenetin binding protein 2 is associated with drug resistance in ovarian cancer
- Authors:
- Fuqiang Yin
- Ling Liu
- Xia Liu
- Gang Li
- Li Zheng
- Danrong Li
- Qi Wang
- Wei Zhang
- Li Li
-
Affiliations: Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Key Laboratory for High-Incidence Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China - Published online on: May 13, 2014 https://doi.org/10.3892/or.2014.3175
- Pages: 362-372
This article is mentioned in:
Abstract
Balch C, Huang TH, Brown R and Nephew KP: The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 191:1552–1572. 2004. View Article : Google Scholar : PubMed/NCBI | |
Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar | |
Suh DH, Kim MK, No JH, Chung HH and Song YS: Metabolic approaches to overcoming chemoresistance in ovarian cancer. Ann N Y Acad Sci. 1229:53–60. 2011. View Article : Google Scholar : PubMed/NCBI | |
Matsuo K, Eno ML, Im DD, Rosenshein NB and Sood AK: Clinical relevance of extent of extreme drug resistance in epithelial ovarian carcinoma. Gynecol Oncol. 116:61–65. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI | |
Johnson SW, Ozols RF and Hamilton TC: Mechanisms of drug resistance in ovarian cancer. Cancer. 71:644–649. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sager R: Tumor suppressor genes: the puzzle and the promise. Science. 246:1406–1412. 1989. View Article : Google Scholar : PubMed/NCBI | |
Sherr CJ: Principles of tumor suppression. Cell. 116:235–246. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep. 30:3–10. 2013.PubMed/NCBI | |
Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S and Ma D: Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett. 271:260–271. 2008. View Article : Google Scholar : PubMed/NCBI | |
Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N and Taniguchi T: Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68:2581–2586. 2008.PubMed/NCBI | |
Haber D and Harlow E: Tumour-suppressor genes: evolving definitions in the genomic age. Nat Genet. 16:320–322. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jones PA and Laird PW: Cancer epigenetics comes of age. Nat Genet. 21:163–167. 1999. View Article : Google Scholar : PubMed/NCBI | |
Acquati F, Morelli C, Cinquetti R, Bianchi MG, Porrini D, Varesco L, Gismondi V, Rocchetti R, Talevi S, Possati L, Magnanini C, Tibiletti MG, Bernasconi B, Daidone MG, Shridhar V, Smith DI, Negrini M, Barbanti-Brodano G and Taramelli R: Cloning and characterization of a senescence inducing and class II tumor suppressor gene in ovarian carcinoma at chromosome region 6q27. Oncogene. 20:980–988. 2001. View Article : Google Scholar : PubMed/NCBI | |
Trubia M, Sessa L and Taramelli R: Mammalian Rh/T2/S-glycoprotein ribonuclease family genes: cloning of a human member located in a region of chromosome 6 (6q27) frequently deleted in human malignancies. Genomics. 42:342–344. 1997. View Article : Google Scholar : PubMed/NCBI | |
McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F and Clarke AE: Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature. 342:955–957. 1989. View Article : Google Scholar : PubMed/NCBI | |
Steinemann D, Gesk S, Zhang Y, Harder L, Pilarsky C, Hinzmann B, Martin-Subero JI, Calasanz MJ, Mungall A, Rosenthal A, Siebert R and Schlegelberger B: Identification of candidate tumor-suppressor genes in 6q27 by combined deletion mapping and electronic expression profiling in lymphoid neoplasms. Genes Chromosomes Cancer. 37:421–426. 2003. View Article : Google Scholar | |
Kim TY, Zhong S, Fields CR, Kim JH and Robertson KD: Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res. 66:7490–7501. 2006. View Article : Google Scholar : PubMed/NCBI | |
Monti L, Rodolfo M, Lo Russo G, Noonan D, Acquati F and Taramelli R: RNASET2 as a tumor antagonizing gene in a melanoma cancer model. Oncol Res. 17:69–74. 2008. | |
Acquati F, Possati L, Ferrante L, Campomenosi P, Talevi S, Bardelli S, Margiotta C, Russo A, Bortoletto E, Rocchetti R, Calza R, Cinquetti R, Monti L, Salis S, Barbanti-Brodano G and Taramelli R: Tumor and metastasis suppression by the human RNASET2 gene. Int J Oncol. 26:1159–1168. 2005.PubMed/NCBI | |
Acquati F, Bertilaccio S, Grimaldi A, Monti L, Cinquetti R, Bonetti P, Lualdi M, Vidalino L, Fabbri M, Sacco MG, van Rooijen N, Campomenosi P, Vigetti D, Passi A, Riva C, Capella C, Sanvito F, Doglioni C, Gribaldo L, Macchi P, Sica A, Noonan DM, Ghia P and Taramelli R: Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase. Proc Natl Acad Sci USA. 108:1104–1109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xiao Z, Chen Z, Li C, Li J, Yanhui Y, Yang F, Yang Y and Oyang Y: Comparative proteomics analysis of the proteins associated with laryngeal carcinoma-related gene 1. Laryngoscope. 116:224–230. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Chen Z: Molecular cloning and characterization of LCRG1 a novel gene localized to the tumor suppressor locus D17S800-D17S930. Cancer Lett. 209:75–85. 2004. | |
Guan R, Wen XY, Wu J, Duan R, Cao H, Lam S, Hou D, Wang Y, Hu J and Chen Z: Knockdown of ZNF403 inhibits cell proliferation and induces G2/M arrest by modulating cell-cycle mediators. Mol Cell Biochem. 365:211–222. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang Z: Verification of differential expression gene and its epigenic and genic study between carbo-resistance cell line and its parental cell line of ovarian carcinoma (unpublished PhD dissertation). Guangxi Medical University. 2010. | |
Dweep H, Sticht C, Pandey P and Gretz N: miRWalk - database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011. | |
Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2008.PubMed/NCBI | |
Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009.PubMed/NCBI | |
Zhang P, Gao W, Li H, Reed E and Chen F: Inducible degradation of checkpoint kinase 2 links to cisplatin-induced resistance in ovarian cancer cells. Biochem Biophys Res Commun. 328:567–572. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jansen AP, Camalier CE, Stark C and Colburn NH: Characterization of programmed cell death 4 in multiple human cancers reveals a novel enhancer of drug sensitivity. Mol Cancer Ther. 3:103–110. 2004.PubMed/NCBI | |
Shiota M, Izumi H, Tanimoto A, Takahashi M, Miyamoto N, Kashiwagi E, Kidani A, Hirano G, Masubuchi D, Fukunaka Y, Yasuniwa Y, Naito S, Nishizawa S, Sasaguri Y and Kohno K: Programmed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth. Cancer Res. 69:3148–3156. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang X, Song X, Liu C, Shi Y, Wang Y, Afonja O, Ma C, Chen YH and Zhang L: Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101:2163–2170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chetram MA and Hinton CV: PTEN regulation of ERK1/2 signaling in cancer. J Recept Signal Transduct Res. 32:190–195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Bäsecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M and McCubrey JA: Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging. 3:192–222. 2011.PubMed/NCBI | |
Chalhoub N and Baker SJ: PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 4:127–150. 2009. View Article : Google Scholar : PubMed/NCBI | |
Okumura N, Yoshida H, Kitagishi Y, Nishimura Y and Matsuda S: Alternative splicings on p53, BRCA1 and PTEN genes involved in breast cancer. Biochem Biophys Res Commun. 413:395–399. 2011. View Article : Google Scholar : PubMed/NCBI | |
Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K and Kuppusamy P: EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem. 282:28609–28618. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Choi EJ, Jin C and Kim DH: Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 97:26–34. 2005.PubMed/NCBI | |
Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T, Gangeswaran R, Manson-Bishop C, Smith P, Danovi SA, Pardo O, Crook T, Mein CA, Lemoine NR, Jones LJ and Basu S: Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ. 15:1752–1759. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zou C, Bai Y, Wazer DE, Band V and Gao Q: DSS1 is required for the stability of BRCA2. Oncogene. 25:1186–1194. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP, Wurz K, Higgins J, Villegas E and Taniguchi T: Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69:6381–6386. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vitari AC, Leong KG, Newton K, Yee C, O’Rourke K, Liu J, Phu L, Vij R, Ferrando R, Couto SS, Mohan S, Pandita A, Hongo JA, Arnott D, Wertz IE, Gao WQ, French DM and Dixit VM: COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature. 474:403–406. 2011. View Article : Google Scholar : PubMed/NCBI | |
Migliorini D, Bogaerts S, Defever D, Vyas R, Denecker G, Radaelli E, Zwolinska A, Depaepe V, Hochepied T, Skarnes WC and Marine JC: Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J Clin Invest. 121:1329–1343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li YF, Wang DD, Zhao BW, Wang W, Huang CY, Chen YM, Zheng Y, Keshari RP, Xia JC and Zhou ZW: High level of COP1 expression is associated with poor prognosis in primary gastric cancer. Int J Biol Sci. 8:1168–1177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Song W, Tromp G, Kolattukudy PE and Fu M: Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One. 3:e28802008. View Article : Google Scholar : PubMed/NCBI | |
Shih JY and Yang PC: The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 32:1299–1304. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paige AJ, Taylor KJ, Taylor C, Hillier SG, Farrington S, Scott D, Porteous DJ, Smyth JF, Gabra H and Watson JE: WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci USA. 98:11417–11422. 2001. View Article : Google Scholar | |
Chiang MF, Yeh ST, Liao HF, Chang NS and Chen YJ: Overexpression of WW domain-containing oxidoreductase WOX1 preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. Biomed Pharmacother. 66:433–438. 2012. View Article : Google Scholar | |
Liu YY, Li L, Li DR, Zhang W and Wang Q: Suppression of WWOX gene by RNA interference reverses platinum resistance acquired in SKOV3/SB cells. Zhonghua Fu Chan Ke Za Zhi. 43:854–858. 2008.(In Chinese). | |
de Leeuw N1, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, Kuhn RM, Ledbetter DH, Martin CL, van Ravenswaaij-Arts CM, Scherer SW, Shams S, Van Vooren S, Sijmons R, Swertz M and Hastings R: Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat. 33:930–940. 2012.PubMed/NCBI | |
Moitra K, Im K, Limpert K, Borsa A, Sawitzke J, Robey R, Yuhki N, Savan R, Huang da W, Lempicki RA, Bates S and Dean M: Differential gene and microRNA expression between etoposide resistant and etoposide sensitive MCF7 breast cancer cell lines. PLoS One. 7:e452682012. View Article : Google Scholar : PubMed/NCBI | |
Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Chan G, Kamath SG, Chen DT, Dressman H and Lancaster JM: MicroRNAs and their target messenger RNAs associated with ovarian cancer response to chemotherapy. Gynecol Oncol. 113:249–255. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ko MA, Zehong G, Virtanen C, Guindi M, Waddell TK, Keshavjee S and Darling GE: MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy. Ann Thorac Surg. 94:1094–1103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eitan R, Kushnir M, Lithwick-Yanai G, David MB, Hoshen M, Glezerman M, Hod M, Sabah G, Rosenwald S and Levavi H: Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol. 114:253–259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, Di Leo A, Le XF, Bast RC Jr, Park ST, Pusztai L and Calin GA: Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer. 118:2603–2614. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Liu Y, Bai Y, Sun Y, Xiao F and Guo Y: Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer. 46:1692–1702. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu XM, Shao XQ, Meng XX, Zhang XN, Zhu L, Liu SX, Lin J and Xiao HS: Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol Sin. 32:259–269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, Yan B, Bian YQ, Zhao J, Wang WZ, Yang AG and Zhang R: MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem Biophys Res Commun. 420:787–792. 2012.PubMed/NCBI | |
Zhang Y, He X, Liu Y, Ye Y, Zhang H, He P, Zhang Q, Dong L, Liu Y and Dong J: microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer. Oncol Rep. 27:685–694. 2012. | |
Zhang H, Li W, Nan F, Ren F, Wang H, Xu Y and Zhang F: MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochem Biophys Res Commun. 404:273–278. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, Liang S, Leminen A, Deng S, Smith L, Johnstone CN, Chen XM, Liu CG, Huang Q, Katsaros D, Calin GA, Weber BL, Bützow R, Croce CM, Coukos G and Zhang L: MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 68:10307–10314. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hisaoka M, Matsuyama A and Nakamoto M: Aberrant calreticulin expression is involved in the dedifferentiation of dedifferentiated liposarcoma. Am J Pathol. 180:2076–2083. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang TH, Kim S and Nephew KP: Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2:342009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ and Li LZ: Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett. 295:110–123. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL and Li LZ: Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine. 56:365–375. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lian L, Qu LJ, Sun HY, Chen YM, Lamont SJ, Liu CJ and Yang N: Gene expression analysis of host spleen responses to Marek’s disease virus infection at late tumor transformation phase. Poult Sci. 91:2130–2138. 2012. | |
Chang MY, Yu YP, Tsai JR, Sheu CC, Chong IW and Lin SR: Combined oligonucleotide microarray-bioinformatics and constructed membrane arrays to analyze the biological pathways in the carcinogenesis of human lung adenocarcinoma. Oncol Rep. 18:569–579. 2007. | |
Morales M, Planet E, Arnal-Estape A, Pavlovic M, Tarragona M and Gomis RR: Tumor-stroma interactions a trademark for metastasis. Breast. 20(Suppl 3): S50–S55. 2011. View Article : Google Scholar : PubMed/NCBI | |
Che CL, Zhang YM, Zhang HH, Sang YL, Lu B, Dong FS, Zhang LJ and Lv FZ: DNA microarray reveals different pathways responding to paclitaxel and docetaxel in non-small cell lung cancer cell line. Int J Clin Exp Pathol. 6:1538–1548. 2013.PubMed/NCBI | |
Wang JM, Wu JT, Sun DK, Zhang P and Wang L: Pathway crosstalk analysis based on protein-protein network analysis in prostate cancer. Eur Rev Med Pharmacol Sci. 16:1235–1242. 2012.PubMed/NCBI | |
Wilson C, Purcell C, Seaton A, Oladipo O, Maxwell PJ, O’Sullivan JM, Wilson RH, Johnston PG and Waugh DJ: Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-κB transcription and evasion of apoptosis. J Pharmacol Exp Ther. 327:746–759. 2008.PubMed/NCBI | |
He D, Xu Q, Yan M, Zhang P, Zhou X, Zhang Z, Duan W, Zhong L, Ye D and Chen W: The NF-kappaB inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma. BMC Cancer. 9:3432009. View Article : Google Scholar : PubMed/NCBI | |
Choi BH, Kim CG, Lim Y, Shin SY and Lee YH: Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NFκB pathway. Cancer Lett. 259:111–118. 2008. View Article : Google Scholar : PubMed/NCBI | |
Godwin P, Baird AM, Heavey S, Barr MP, O’Byrne KJ and Gately K: Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 3:1202013. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Xiao X, Rosen DG, Cheng X, Wu X, Chang B, Liu G, Xue F, Mercado-Uribe I, Chiao P, Du X and Liu J: The biphasic role of NF-κB in progression and chemoresistance of ovarian cancer. Clin Cancer Res. 17:2181–2194. 2011. | |
Lee SC, Xu X, Lim YW, Iau P, Sukri N, Lim SE, Yap HL, Yeo WL, Tan P, Tan SH, McLeod H and Goh BC: Chemotherapy-induced tumor gene expression changes in human breast cancers. Pharmacogenet Genomics. 19:181–192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Arafa el-SA, Zhu Q, Barakat BM, Wani G, Zhao Q, El-Mahdy MA and Wani AA: Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res. 69:8910–8917. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li QQ, Yunmbam MK, Zhong X, Yu JJ, Mimnaugh EG, Neckers L and Reed E: Lactacystin enhances cisplatin sensitivity in resistant human ovarian cancer cell lines via inhibition of DNA repair and ERCC-1 expression. Cell Mol Biol. 47:OL61–OL72. 2001.PubMed/NCBI | |
Menendez JA, Vellon L, Mehmi I, Teng PK, Griggs DW and Lupu R: A novel CYR61-triggered ‘CYR61-αvβ3 integrin loop’ regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene. 24:761–779. 2005.PubMed/NCBI | |
Galan-Moya EM, de la Cruz-Morcillo MA, Llanos Valero M, Callejas-Valera JL, Melgar-Rojas P, Hernadez Losa J, Salcedo M, Fernández-Aramburo A, Ramon y Cajal S and Sánchez-Prieto R: Balance between MKK6 and MKK3 mediates p38 MAPK associated resistance to cisplatin in NSCLC. PLoS One. 6:e284062011. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang Y, Zhen P, Luo X, Zhang C, Zhou L, Lu Y, Yang Y, Zhang W and Wan J: Genome-wide analysis of miRNA signature differentially expressed in doxorubicin-resistant and parental human hepatocellular carcinoma cell lines. PLoS One. 8:e541112013. View Article : Google Scholar | |
Lange TS, Stuckey AR, Robison K, Kim KK, Singh RK, Raker CA and Brard L: Effect of a vitamin D3 derivative (B3CD) with postulated anti-cancer activity in an ovarian cancer animal model. Invest New Drugs. 28:543–553. 2010.PubMed/NCBI | |
Zhang P, Ling G, Pan X, Sun J, Zhang T, Pu X, Yin S and He Z: Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine. 8:185–193. 2012. View Article : Google Scholar | |
Calzolari A, Papucci A, Baroni G, Ficarra G, Porfirio B, Chiarelli I and Di Lollo S: Epstein-Barr virus infection and P53 expression in HIV-related oral large B cell lymphoma. Head Neck. 21:454–460. 1999. View Article : Google Scholar : PubMed/NCBI | |
Longley DB and Johnston PG: Molecular mechanisms of drug resistance. J Pathol. 205:275–292. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer. Int J Oncol. 42:1305–1316. 2013.PubMed/NCBI | |
Kong KA, Yoon H and Kim MH: Akt1 as a putative regulator of Hox genes. Gene. 513:287–291. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharan R, Ulitsky I and Shamir R: Network-based prediction of protein function. Mol Syst Biol. 3:882007. View Article : Google Scholar : PubMed/NCBI | |
Mostafavi S, Ray D, Warde-Farley D, Grouios C and Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9(Suppl 1): S42008. View Article : Google Scholar : PubMed/NCBI | |
Jenssen TK, Laegreid A, Komorowski J and Hovig E: A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 28:21–28. 2001. View Article : Google Scholar : PubMed/NCBI | |
Behm-Ansmant I, Rehwinkel J and Izaurralde E: MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol. 71:523–530. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kloosterman WP and Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI | |
Croce CM and Calin GA: miRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D and Calin GA: miRNAs and their potential for use against cancer and other diseases. Future Oncol. 3:521–537. 2007. View Article : Google Scholar : PubMed/NCBI |