1
|
Huang WL: Signal Transduction. Beijing
People’s Medical Publishing House Press; Beijing: pp. 151–199.
2005
|
2
|
Zhou L, Ding Y, Chen W, Zhang P, Chen Y
and Lv X: The in vitro study of ursolic acid and oleanolic acid
inhibiting cariogenic microorganisms as well as biofilm. Oral Dis.
19:494–500. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang J, Shan A, Liu T, Zhang C and Zhang
Z: In vitro immunomodulatory effects of an oleanolic acid-enriched
extract of Ligustrum lucidum fruit (Ligustrum lucidum
supercritical CO2 extract) on piglet immunocytes. Int
Immunopharmacol. 4:758–763. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mapanga RF, Rajamani U, Dlamini N, et al:
Oleanolic acid: a novel cardioprotective agent that blunts
hyperglycemia-induced contractile dysfunction. Plos One.
7:e473222012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang H, Zhang Y, Jiang YP, et al:
Curative effects of oleanolic acid on formed hypertrophic scars in
the rabbit ear model. Evid Based Complement Alternat Med.
2012:8375812012.PubMed/NCBI
|
6
|
Wang X, Bai H, Zhang X, et al:
ERK-p53-mediated cell cycle arrest and mitochondrial-dependent
apoptosis. Carcinogenesis. 34:1323–1330. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhou R, Zhang Z, Zhao L, et al: Inhibition
of mTOR signaling by oleanolic acid contributes to its anti-tumor
activity in osteosarcoma cells. J Orthop Res. 29:846–852. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Pratheeshkumar P and Kuttan G: Oleanolic
acid induces apoptosis by modulating p53, Bax, Bcl-2 and caspase-3
gene expression and regulates the activation of transcription
factors and cytokine profile in B16F. J Environ Pathol Toxicol
Oncol. 30:21–31. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Feng L, Au-Yeung W, Xu YH, Wang SS, Zhu Q
and Xiang P: Oleanolic acid from Prunella Vulgaris L. induces
SPC-A-1 cell line apoptosis via regulation of Bax, Bad and Bcl-2
expression. Asian Pac J Cancer Prev. 12:403–408. 2011.
|
10
|
Wei JT, Liu M, Liu HZ, Zhao J, Xiao L, Han
LJ and Lin XK: Oleanolic acid inhibits proliferation of HUVECs, and
inhibits migration and tube formation via VEGF pathway. Yao Xue Xue
Bao. 47:1457–1462. 2012.(In Chinese).
|
11
|
Choi CY, You HJ and Jeong HG: Nitric oxide
and tumor necrosis factor-alpha production by oleanolic acid via
nuclear factor-kappaB activation in macrophages. Biochem Biophys
Res Commun. 288:49–55. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Schwencke C, Braun-Dullaeus RC, Wunderlich
C and Strasser RH: Caveolae and caveolin in transmembrane
signaling: Implications for human disease. Cardiovascular Res.
70:42–49. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yi JS, Mun DG, Lee H, et al: PTRF/cavin-1
is essential for multidrug resistance in cancer cells. J Proteome
Res. 12:605–614. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lavie Y, Fiucci G and Liscovitch M:
Up-regulation of caveolae and caveolar constituents in
multidrug-resistant cancer cells. J Biol Chem. 273:32380–32383.
1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fang K, Fu W, Beardsley AR, Sun X, Lisanti
MP and Liu J: Overexpression of caveolin-1 inhibits endothelial
cell proliferation by arresting the cell cycle at G0/G1 phase. Cell
Cycle. 6:199–204. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zou H, Stoppani E, Volonte D and Galbiati
F: Caveolin-1, cellular senescence and age-related diseases. Mech
Ageing Dev. 132:533–542. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bai L, Deng X, Li J, et al: Regulation of
cellular senescence by the essential caveolar component
PTRF/Cavin-1. Cell Res. 21:1088–1101. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martinez-Outschoorn UE, Whitaker-Menezes
D, Lin Z, et al: Cytokine production and inflammation drive
autophagy in the tumor microenvironment: role of stromal caveolin-1
as a key regulator. Cell Cycle. 10:1784–1793. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu Y, Wang Y, Shi D and Zou W: Autophagy
and Caveolin-1 in cancer: a review. Chen Wu Gong Chen Xue Bao.
28:912–917. 2012.(In Chinese).
|
20
|
Pang A, Au WY and Kwong YL: Caveolin-1
gene is coordinately regulated with the multidrug resistance 1 gene
in normal and leukemic bone marrow. Leuk Res. 28:973–977. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Sawada S, Ishikawa C, Tanji H, et al:
Overexpression of caveolin-1 in adult T-cell leukemia. Blood.
115:2220–2230. 2010. View Article : Google Scholar
|
22
|
Umehara K, Takagi R, Kuroyanagi M, Ueno A,
Taki T and Chen YJ: Studies on differentiation-inducing activities
of triterpenes. Chem Pharm Bull (Tokyo). 40:401–405. 1992.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hsu HY, Yang JJ and Lin CC: Effects of
oleanolic acid and ursolic acid on inhibiting tumor growth and
enhancing the recovery of hematopoietic system postirradiation in
mice. Cancer Lett. 111:7–13. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Park JH, Lee MY and Han HJ: A potential
role for CAV1 in estradiol-17 beta-induced proliferation of mouse
embryonic stem cells: involvement of Src, PI3K/Akt, and MAPKs
pathways. Int J Biochem Cell Biol. 41:659–665. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Park JH and Han HJ: CAV1 plays important
role in EGF-induced migration and proliferation of mouse embryonic
stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell
Physiol. 297:C935–C944. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Feng S, Wang Y, Wang X, et al: CAV1 gene
silencing promotes the activation of PI3K/AKT dependent on
ERalpha36 and the transformation of MCF10ACE. Sci China Life Sci.
53:598–605. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park JH, Ryu JM and Han HJ: Involvement of
CAV1 in fibronectin-induced mouse embryonic stem cell
proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J
Cell Physiol. 226:267–275. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tsuji Y, Nakagawa T, Hatanaka M, Takeuchi
T, Matsumoto E, Takenaka H and Shimizu A: Quantification of
caveolin isoforms using quantitative real-time RT-PCR, and analysis
of promoter CpG methylation of caveolin-1alpha in human T cell
leukemia cell lines. Int J Mol Med. 18:489–495. 2006.PubMed/NCBI
|
29
|
Joo HJ, Oh DK, Kim YS, Lee KB and Kim SJ:
Increased expression of CAV1 and microvessel density correlates
with metastasis and poor progrosis in clear cell renal cell
carcinoma. BJU Int. 93:291–296. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chunhacha P and Chanvorachote P: Roles of
Caveolin-1 on anoikis resistance in non small cell lung cancer. Int
J Physiol Pathophysiol Pharmacol. 4:149–155. 2012.PubMed/NCBI
|
31
|
Lee MY, Lee SH, Park JH and Han HJ:
Interaction of galectin-1 with caveolae induces mouse embryonic
stem cell proliferation through the Src, ERas, Akt and mTOR
signaling pathways. Cell Mol Life Sci. 66:1467–1478. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ryu JM and Han HJ: L-threonine regulates
G1/S phase transition of mouse embryonic stem cells via PI3K/Akt,
MAPKs, and mTORC pathways. J Biol Chem. 286:23667–23678. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Rao X, Evans J, Chae H, et al: CpG island
shore methylation regulates caveolin-1 expression in breast cancer.
Oncogene. 32:4519–4528. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Felicetti F, Parolini I, Bottero L, et al:
Caveolin-1 tumor-promoting role in human melanoma. Int J Cancer.
125:1514–1522. 2009. View Article : Google Scholar : PubMed/NCBI
|