1
|
Heare T, Hensley MA and Dell’Orfano S:
Bone tumors: osteosarcoma and Ewing’s sarcoma. Curr Opin Pediatr.
21:365–372. 2009.
|
2
|
Mankin HJ, Hornicek FJ, Rosenberg AE,
Harmon DC and Gebhardt MC: Survival data for 648 patients with
osteosarcoma treated at one institution. Clin Orthop Relat Res.
429:286–291. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bacci G, Briccoli A, Rocca M, Ferrari S,
Donati D, Longhi A, Bertoni F, Bacchini P, Giacomini S, Forni C,
Manfrini M and Galletti S: Neoadjuvant chemotherapy for
osteosarcoma of the extremities with metastases at presentation:
recent experience at the Rizzoli Institute in 57 patients treated
with cisplatin, doxorubicin, and a high dose of methotrexate and
ifosfamide. Ann Oncol. 14:1126–1134. 2003. View Article : Google Scholar
|
4
|
Lewis IJ, Nooij MA, Whelan J, Sydes MR,
Grimer R, Hogendoorn PC, Memon MA, Weeden S, Uscinska BM, van
Glabbeke M, Kirkpatrick A, Hauben EI and Craft AW: Improvement in
histologic response but not survival in osteosarcoma patients
treated with intensified chemotherapy: a randomized phase III trial
of the European Osteosarcoma Intergroup. J Natl Cancer Inst.
99:112–128. 2007. View Article : Google Scholar
|
5
|
Baldini N, Scotlandi K, Barbanti-Bròdano
G, Manara MC, Maurici D, Bacci G, Bertoni F, Picci P, Sottili S,
Campanacci M and Serra M: Expression of P-glycoprotein in
high-grade osteosarcomas in relation to clinical outcome. N Engl J
Med. 333:1380–1385. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bielack SS, Carrle D, Hardes J, Schuck and
Paulussen M: Bone tumors in adolescents and young adults. Curr
Treat Options Oncol. 9:67–80. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gottesman MM, Fojo T and Bates SE:
Multidrug resistance in cancer: role of ATP-dependent transporters.
Nat Rev Cancer. 2:48–58. 2002. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Borst P and Elferink RO: Mammalian ABC
transporters in health and disease. Annu Rev Biochem. 71:537–592.
2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE
and Gottesman MM: P-glycoprotein: from genomics to mechanism.
Oncogene. 22:7468–7485. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Baldini N, Scotlandi K, Serra M, Picci P,
Bacci G, Sottili S and Campanacci M: P-glycoprotein expression in
osteosarcoma: a basis for risk-adapted adjuvant chemotherapy. J
Orthop Res. 17:629–632. 1999. View Article : Google Scholar : PubMed/NCBI
|
11
|
Harguindey S, Orive G, Luis Pedraz J,
Paradiso A and Reshkin SJ: The role of pH dynamics and the
Na+/H+antiporter in the etiopathogenesis and
treatment of cancer. Two faces of the same coin - one single
nature. Biochim Biophys Acta. 1756:1–24. 2005.PubMed/NCBI
|
12
|
Shicang Y, Guijun H, Guisheng Q, Yuying L,
Guoming W and Ruiling G: Efficacy of chemotherapeutic agents under
hypoxic conditions in pulmonary adenocarcinoma multidrug resistant
cell line. J Chemother. 19:203–211. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen KG and Sikic BI: Molecular pathways:
regulation and therapeutic implications of multidrug resistance.
Clin Cancer Res. 18:1863–1869. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cheng GM and To KK: Adverse cell culture
conditions mimicking the tumor microenvironment upregulate ABCG2 to
mediate multidrug resistance and a more malignant phenotype. ISRN
Oncol. 2012:7460252012. View Article : Google Scholar
|
15
|
Rohwer N and Cramer T: Hypoxia-mediated
drug resistance: novel insights on the functional interaction of
HIFs and cell death pathways. Drug Resist Updat. 14:191–201. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Semenza GL: Hypoxia-inducible factors:
mediators of cancer progression and targets for cancer therapy.
Trends Pharmacol Sci. 33:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
El Naggar A, Clarkson P, Zhang F, Mathers
J, Tognon C and Sorensen PH: Expression and stability of hypoxia
inducible factor 1α in osteosarcoma. Pediatr Blood Cancer.
59:1215–1222. 2012.
|
18
|
Ke Q and Costa M: Hypoxia-inducible
factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl
Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kallio PJ, Pongratz I, Gradin K, McGuire J
and Poellinger L: Activation of hypoxia-inducible factor 1α:
posttranscriptional regulation and conformational change by
recruitment of the Arnt transcription factor. Proc Natl Acad Sci
USA. 94:5667–5672. 1997.
|
21
|
Semenza GL: Hypoxia-inducible factor 1:
master regulator of O2 homeostasis. Curr Opin Genet Dev.
8:588–594. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Comerford KM, Wallace TJ, Karhausen J,
Louis NA, Montalto MC and Colgan SP: Hypoxia-inducible
factor-1-dependent regulation of the multidrug resistance
(MDR1) gene. Cancer Res. 62:3387–3394. 2002.PubMed/NCBI
|
23
|
Chen L, Feng P, Li S, Long D, Cheng J, Lu
Y and Zhou D: Effect of hypoxia-inducible factor-1α silencing on
the sensitivity of human brain glioma cells to doxorubicin and
etoposide. Neurochem Res. 34:984–990. 2009.
|
24
|
Li J, Shi M, Cao Y, Yuan W, Pang T, Li B,
Sun Z, Chen L and Zhao RC: Knockdown of hypoxia-inducible factor-1α
in breast carcinoma MCF-7 cells results in reduced tumor growth and
increased sensitivity to methotrexate. Biochem Biophys Res Commun.
342:1341–1351. 2006.
|
25
|
Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo
C, Han S, Liu J, Sun S, Han Z, Wu K and Fan D: Hypoxia-inducible
factor-1 α contributes to hypoxia-induced chemoresistance in
gastric cancer. Cancer Sci. 99:121–128. 2008.
|
26
|
Ding Z, Yang L, Xie X, Xie F, Pan F, Li J,
He J and Liang H: Expression and significance of hypoxia-inducible
factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma
tissue and cells. J Cancer Res Clin Oncol. 136:1697–1707. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chi SN, Conklin LS, Qin J, Meyers PA,
Huvos AG, Healey JH and Gorlick R: The patterns of relapse in
osteosarcoma: the Memorial Sloan-Kettering experience. Pediatr
Blood Cancer. 42:46–51. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chou AJ and Gorlick R: Chemotherapy
resistance in osteosarcoma: current challenges and future
directions. Expert Rev Anticancer Ther. 6:1075–1085. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Saraswathy M and Gong S: Different
strategies to overcome multidrug resistance in cancer. Biotechnol
Adv. 31:1397–1407. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gillet JP, Efferth T and Remacle J:
Chemotherapy-induced resistance by ATP-binding cassette transporter
genes. Biochim Biophys Acta. 1775:237–262. 2007.PubMed/NCBI
|
31
|
Yokochi T and Robertson KD: Doxorubicin
inhibits DNMT1, resulting in conditional apoptosis. Mol Pharmacol.
66:1415–1420. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wardman P: Electron transfer and oxidative
stress as key factors in the design of drugs selectively active in
hypoxia. Curr Med Chem. 8:739–761. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Weidemann A and Johnson RS: Biology of
HIF-1α. Cell Death Differ. 15:621–627. 2008.
|
34
|
Grassilli E, Ballabeni A, Maellaro E, Del
Bello B and Helin K: Loss of MYC confers resistance to
doxorubicin-induced apoptosis by preventing the activation of
multiple serine protease- and caspase-mediated pathways. J Biol
Chem. 279:21318–21326. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nakagawara A, Kadomatsu K, Sato S, Kohno
K, Takano H, Akazawa K, Nose Y and Kuwano M: Inverse correlation
between expression of multidrug resistance gene and N-myc
oncogene in human neuroblastomas. Cancer Res. 50:3043–3047.
1990.PubMed/NCBI
|
36
|
Prados J, Melguizo C, Fernandez A, Aranega
AE, Alvarez L and Aranega A: Inverse expression of mdr1 and
c-myc genes in rhabdomyosarcoma cell line resistant to
actinomycin d. J Pathol. 180:85–89. 1996.
|
37
|
Dang CV, Kim JW, Gao P and Yustein J: The
interplay between MYC and HIF in cancer. Nat Rev Cancer. 8:51–56.
2008. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Yoo YG, Christensen J and Huang LE: HIF-1α
confers aggressive malignant traits on human tumor cells
independent of its canonical transcriptional function. Cancer Res.
71:1244–1252. 2011.
|
39
|
Hayashi M, Yoo YG, Christensen J and Huang
LE: Requirement of evading apoptosis for HIF-1α-induced malignant
progression in mouse cells. Cell Cycle. 10:2364–2372.
2011.PubMed/NCBI
|
40
|
Wanzel M, Herald S and Eilers M:
Transcriptional repression by Myc. Trends Cell Biol. 13:146–150.
2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Herkert B and Eilers M: Transcriptional
repression: the dark side of myc. Genes Cancer. 1:580–586. 2010.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Gorospe M, Wang X and Holbrook NJ:
Functional role of p21 during the cellular response to stress. Gene
Expr. 7:377–385. 1999.PubMed/NCBI
|
43
|
Li Y, Dowbenko D and Lasky LA: AKT/PKB
phosphorylation of p21Cip/WAF1 enhances protein
stability of p21Cip/WAF1 and promotes cell survival. J
Biol Chem. 277:11352–11361. 2002.PubMed/NCBI
|
44
|
Barboule N, Chadebech P, Baldin V, Vidal S
and Valette A: Involvement of p21 in mitotic exit after paclitaxel
treatment in MCF-7 breast adenocarcinoma cell line. Oncogene.
15:2867–2875. 1997. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang W, Kornblau SM, Kobayashi T, Gambel
A, Claxton D and Deisseroth AB: High levels of constitutive
WAF1/Cip1 protein are associated with chemoresistance in acute
myelogenous leukaemia. Clin Cancer Res. 1:1051–1057.
1995.PubMed/NCBI
|
46
|
Erber R, Klein W, Andl T, Enders C, Born
Al, Conradt C, Bartek J and Bosch FX: Aberrant
p21CIP1/WAF1 protein accumulation in head-and-neck
cancer. Int J Cancer. 74:383–389. 1997.
|
47
|
Wang Y, Blandino G and Givol D: Induced
p21waf expression in H1299 cell line promotes cell
senescence and protects against cytotoxic effect of radiation and
doxorubicin. Oncogene. 18:2643–2649. 1999.
|
48
|
Haas-Kogan D, Shalev N, Wong M, Mills G,
Yount G and Stokoe D: Protein kinase B (PKB/Akt) activity is
elevated in glioblastoma cells due to mutation of the tumor
suppressor PTEN/MMAC. Curr Biol. 8:1195–1198. 1998. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang CC, Liao YP, Mischel PS, Iwamoto KS,
Cacalano NA and McBride WH: HDJ-2 as a target for
radiosensitization of glioblastoma multiforme cells by the
farnesyltransferase inhibitor R115777 and the role of p53/p21
pathway. Cancer Res. 66:6756–6762. 2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Glaser T, Wagenknecht B and Weller M:
Identification of p21 as a target of cycloheximide-mediated
facilitation of CD95-mediated apoptosis in human malignant glioma
cells. Oncogene. 20:4757–4767. 2001. View Article : Google Scholar
|
51
|
Happold C, Roth P, Wick W, Schmidt N,
Florea AM, Silginer M, Reifenberger G and Weller M: Distinct
molecular mechanisms of acquired resistance to temozolomide in
glioblastoma cells. J Neurochem. 122:444–455. 2012. View Article : Google Scholar : PubMed/NCBI
|