1
|
Lopušná K, Režuchová I, Betáková T, et al:
Interferons lambda, new cytokines with antiviral activity. Acta
Virol. 57:171–179. 2013.PubMed/NCBI
|
2
|
Tagawa M, Kawamura K, Li Q, et al: A
possible anticancer agent, type III interferon, activates cell
death pathways and produces antitumor effects. Clin Dev Immunol.
2011:4790132011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li Q, Kawamura K, Okamoto S, et al:
Adenoviruses-mediated transduction of human oesophageal carcinoma
cells with the interferon-λ genes produced anti-tumour effects. Br
J Cancer. 105:1302–1312. 2011.PubMed/NCBI
|
4
|
Donnelly RP and Kotenko SV:
Interferon-lambda: a new addition to an old family. J Interferon
Cytokine Res. 30:555–564. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tamura W and Fukami N: Early gastric
cancer and dysplasia. Gastrointest Endosc Clin N Am. 23:77–94.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hu Y, Fang JY and Xiao SD: Can the
incidence of gastric cancer be reduced in the new century? J Dig
Dis. 14:11–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Iravani O, Tay BW, Chua PJ, et al:
Claudins and gastric carcinogenesis. Exp Biol Med. 238:344–349.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Saito H, Takaya S, Fukumoto Y, et al:
Clinicopathologic characteristics and prognosis of gastric cancer
in young patients. Yonago Acta Med. 55:57–61. 2012.PubMed/NCBI
|
9
|
Wongthida P, Diaz RM, Galivo F, et al:
Type III IFN interleukin-28 mediates the antitumor efficacy of
oncolytic virus VSV in immune-competent mouse models of cancer.
Cancer Res. 70:4539–4549. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yan Y, Zhang J, Liu Y, et al: Inhibition
of lung adenocarcinoma transfected with interleukin 28A recombinant
adenovirus (Ad- mIFN-λ2) in vivo. Cancer Biother Radiopharm.
28:124–130. 2013.PubMed/NCBI
|
11
|
Steen HC and Gamero AM: Interferon-lambda
as a potential therapeutic agent in cancer treatment. J Interferon
Cytokine Res. 30:597–602. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ding F, Shao ZW, Yang SH, et al: Role of
mitochondrial pathway in compression-induced apoptosis of nucleus
pulposus cells. Apoptosis. 17:579–590. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mitrea DM, Yoon MK, Ou L, et al:
Disorder-function relationships for the cell cycle regulatory
proteins p21 and p27. Biol Chem. 393:259–274. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang L, Wang G, Yang D, et al: Euphol
arrests breast cancer cells at the G1 phase through the modulation
of cyclin D1, p21 and p27 expression. Mol Med Rep. 8:1279–1285.
2013.PubMed/NCBI
|
15
|
Zhang Z, Du GJ, Wang CZ, et al: Compound
K, a ginsenoside metabolite, inhibits colon cancer growth via
multiple pathways encluding p53-p21 interactions. Int J Mol Sci.
14:2980–2995. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Abushahba W, Balan M, Castaneda I, et al:
Antitumor activity of type I and type III interferons in BNL
hepatoma model. Cancer Immunol Immunother. 59:1059–1071. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang L, Wei J and He S: Integrative
genomic analyses on interferon-lambdas and their roles in cancer
prediction. Int J Mol Med. 25:299–304. 2010.PubMed/NCBI
|
18
|
Li Q, Kawamura K, Ma G, et al:
Interferon-lambda induces G1 phase arrest or apoptosis in
oesophageal carcinoma cells and produces anti-tumour effects in
combination with anti-cancer agents. Eur J Cancer. 46:180–190.
2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lasfar A, Abushahba W, Balan M, et al:
Interferon lambda: a new sword in cancer immunotherapy. Clin Dev
Immunol. 2011:3495752011. View Article : Google Scholar : PubMed/NCBI
|
20
|
George PM, Badiger R, Alazawi W, et al:
Pharmacology and therapeutic potential of interferons. Pharmacol
Ther. 135:44–53. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Renault TT, Teijido O, Antonsson B, et al:
Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-x
(L): keep your friends close but your enemies closer. Int J Biochem
Cell Biol. 45:64–67. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Low IC, Kang J and Pervaiz S: Bcl-2: a
prime regulator of mitochondrial redox metabolism in cancer cells.
Antioxid Redox Signal. 15:2975–2987. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shamas-Din A, Kale J, Leber B, et al:
Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb
Perspect Biol. 5:a0087142013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Imesch P, Scheiner D, Szabo E, et al:
Conjugates of cytochrome c and antennapedia peptide
activates apoptosis and inhibit proliferation of HeLa cancer cells.
Exp Ther Med. 6:786–790. 2013.
|
25
|
Liang J, Yu Y, Wang B, et al: Ginsenoside
Rb1 attenuates oxygen-glucose deprivation-induced apoptosis in
SH-SY5Y cells via protection of mitochondria and inhibition of AIF
and cytochrome c release. Molecules. 18:12777–12792. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Park C, Jeong NY, Kim GY, et al:
Momilactone B induces apoptosis and G1 arrest of the cell cycle in
human monocytic leukemia U937 cells through downregulation of pRB
phosphorylation and induction of the cyclin-dependent kinase
inhibitor p21Waf1/Cip1. Oncol Rep. 31:1653–1660. 2014.
|
27
|
Koyama M, Sowa Y, Hitomi T, et al:
Perillyl alcohol causes G1 arrest through p15(INK4b) and
p21(WAF1/Cip1) induction. Oncol Rep. 29:779–784. 2013.PubMed/NCBI
|