1
|
Ciocca DR, Puy LA, Fasoli LC, et al:
Corticotropin-releasing hormone, luteinizing hormone-releasing
hormone, growth hormone-releasing hormone, and somatostatin-like
immunoreactivities in biopsies from breast cancer patients. Breast
Cancer Res Treat. 15:175–184. 1990. View Article : Google Scholar
|
2
|
Reubi JC, Waser B, Vale W and Rivier J:
Expression of CRF1 and CRF2 receptors in human cancers. J Clin
Endocrinol Metab. 88:3312–3320. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sato H, Nagashima Y, Chrousos GP,
Ichihashi M and Funasak Y: The expression of
corticotropin-releasing hormone in melanoma. Pigment Cell Res.
15:98–103. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Arcuri F, Cintorino M, Florio P, et al:
Expression of urocortin mRNA and peptide in the human prostate and
in prostatic adenocarcinoma. Prostate. 52:167–172. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Florio P, De Falco G, Leucci E, et al:
Urocortin expression is downregulated in human endometrial
carcinoma. J Endocrinol. 190:99–105. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Iino K, Sasano H, Oki Y, et al: Urocortin
expression in human pituitary gland and pituitary adenoma. J Clin
Endocrinol Metab. 82:3842–3850. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Graziani G, Tentori L, Muzi A, et al:
Evidence that corticotropin-releasing hormone inhibits cell growth
of human breast cancer cells via the activation of CRH-R1 receptor
subtype. Mol Cell Endocrinol. 264:44–49. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Carlson KW, Nawy SS, Wei ET, et al:
Inhibition of mouse melanoma cell proliferation by
corticotropin-releasing hormone and its analogs. Anticancer Res.
21:1173–1179. 2001.PubMed/NCBI
|
9
|
Arbiser JL, Karalis K, Viswanathan A, et
al: Corticotropin-releasing hormone stimulates angiogenesis and
epithelial tumor growth in the skin. J Invest Dermatol.
113:838–842. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang Y, Park H, Kim TS, Bang SI and Cho D:
Enhancement of cell migration by corticotropin-releasing hormone
through ERK1/2 pathway in murine melanoma cell line, B16F10. Exp
Dermatol. 16:22–27. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Radulovic M, Hippel C and Spiess J:
Corticotropin-releasing factor (CRF) rapidly suppresses apoptosis
by acting upstream of the activation of caspases. J Neurochem.
84:1074–1085. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Trinchieri G: Biology of natural killer
cells. Adv Immunol. 47:187–376. 1989. View Article : Google Scholar : PubMed/NCBI
|
13
|
Raulet DH: Interplay of natural killer
cells and their receptors with the adaptive immune response. Nat
Immunol. 5:996–1002. 2004. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Bahram S, Inoko H, Shiina T and
Radosavljevic M: MIC and other NKG2D ligands: from none to too
many. Curr Opin Immunol. 17:505–509. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Groh V, Steinle A, Bauer S and Spies T:
Recognition of stress-induced MHC molecules by intestinal
epithelial γδ T cells. Science. 279:1737–1740. 1998.
|
16
|
Raulet DH: Roles of the NKG2D
immunoreceptor and its ligands. Nat Rev Immunol. 3:781–790. 2003.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Welte SA, Sinzger C, Lutz SZ, et al:
Selective intracellular retention of virally induced NKG2D ligands
by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol.
33:194–203. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Groh V, Wu J, Yee C and Spies T:
Tumour-derived soluble MIC ligands impair expression of NKG2D and
T-cell activation. Nature. 419:734–738. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Pende D, Rivera P, Marcenaro S, et al:
Major histocompatibility complex class I-related chain A and
UL16-binding protein expression on tumor cell lines of different
histotypes: analysis of tumor susceptibility to NKG2D-dependent
natural killer cell cytotoxicity. Cancer Res. 62:6178–6186.
2002.
|
20
|
Waldhauer I, Goehlsdorf D, Gieseke F, et
al: Tumor-associated MICA is shed by ADAM proteases. Cancer Res.
68:6368–6376. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Salih HR, Antropius H, Gieseke F, et al:
Functional expression and release of ligands for the activating
immunoreceptor NKG2D in leukemia. Blood. 102:1389–1396. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Salih HR, Holdenrieder S and Steinle A:
Soluble NKG2D ligands: prevalence, release, and functional impact.
Front Biosci. 13:3448–3456. 2008. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Song H, Kim J, Cosman D and Choi I:
Soluble ULBP suppresses natural killer cell activity via
down-regulating NKG2D expression. Cell Immunol. 239:22–30. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lichtenfels R, Biddison WE, Schulz H, Vogt
AB and Martin R: CARE-LASS (calcein-release-assay), an improved
fluorescence-based test system to measure cytotoxic T lymphocyte
activity. J Immunol Methods. 172:227–239. 1994. View Article : Google Scholar : PubMed/NCBI
|
25
|
Waldhauer I and Steinle A: Proteolytic
release of soluble UL16-binding protein 2 from tumor cells. Cancer
Res. 66:2520–2526. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bale TL and Vale WW: CRF and CRF
receptors: role in stress responsivity and other behaviors. Annu
Rev Pharmacol Toxicol. 44:525–557. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Klimaviciute A, Calciolari J, Bertucci E,
et al: Corticotropin-releasing hormone, its binding protein and
receptors in human cervical tissue at preterm and term labor in
comparison to non-pregnant state. Reprod Biol Endocrinol. 4:292006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Minas V, Rolaki A, Kalantaridou SN, et al:
Intratumoral CRH modulates immuno-escape of ovarian cancer cells
through FasL regulation. Br J Cancer. 97:637–645. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cerwenka A and Lanier LL: Ligands for
natural killer cell receptors: redundancy or specificity. Immunol
Rev. 181:158–169. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Diefenbach A and Raulet DH: Strategies for
target cell recognition by natural killer cells. Immunol Rev.
181:170–184. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lanier LL: NKG2D. J Biol Regul Homeost
Agents. 17:338–340. 2003.
|
32
|
López-Soto A, Quiñones-Lombraña A,
López-Arbesú R, López-Larrea C and González S: Transcriptional
regulation of ULBP1, a human ligand of the NKG2D receptor. J Biol
Chem. 281:30419–30430. 2006.PubMed/NCBI
|
33
|
Rohner A, Langenkamp U, Siegler U,
Kalberer CP and Wodnar-Filipowicz A: Differentiation-promoting
drugs up-regulate NKG2D ligand expression and enhance the
susceptibility of acute myeloid leukemia cells to natural killer
cell-mediated lysis. Leuk Res. 31:1393–1402. 2007. View Article : Google Scholar
|
34
|
Raffaghello L, Prigione I, Airoldi I, et
al: Downregulation and/or release of NKG2D ligands as immune
evasion strategy of human neuroblastoma. Neoplasia. 6:558–568.
2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Salih HR, Rammensee HG and Steinle A:
Cutting edge: down-regulation of MICA on human tumors by
proteolytic shedding. J Immunol. 169:4098–4102. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu JD, Higgins LM, Steinle A, Cosman D,
Haugk K and Plymate SR: Prevalent expression of the
immunostimulatory MHC class I chain-related molecule is
counteracted by shedding in prostate cancer. J Clin Invest.
114:560–568. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Onda H, Ohkubo S, Shintani Y, et al: A
novel secreted tumor antigen with a
glycosylphosphatidylinositol-anchored structure ubiquitously
expressed in human cancers. Biochem Biophys Res Commun.
285:235–243. 2001. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fernández-Messina L, Ashiru O, Boutet P,
et al: Differential mechanisms of shedding of the
glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol
Chem. 285:8543–8551. 2010.PubMed/NCBI
|
39
|
Dubicke A, Akerud A, Sennstrom M, et al:
Different secretion patterns of matrix metalloproteinases and IL-8
and effect of corticotropin-releasing hormone in preterm and term
cervical fibroblasts. Mol Hum Reprod. 14:641–647. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li W and Challis JR:
Corticotropin-releasing hormone and urocortin induce secretion of
matrix metalloproteinase-9 (MMP-9) without change in tissue
inhibitors of MMP-1 by cultured cells from human placenta and fetal
membranes. J Clin Endocrinol Metab. 90:6569–6574. 2005. View Article : Google Scholar
|