1
|
Folkman J: Fundamental concepts of the
angiogenic process. Curr Mol Med. 3:643–651. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Adams RH and Alitalo K: Molecular
regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell
Biol. 8:464–478. 2007. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Carmeliet P: Angiogenesis in life, disease
and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Folkman J: Anti-angiogenesis: new concept
for therapy of solid tumors. Ann Surg. 175:409–416. 1972.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Holleb AI and Folkman J: Tumor
angiogenesis. CA Cancer J Clin. 22:226–229. 1972. View Article : Google Scholar
|
6
|
Ferrara N and Kerbel RS: Angiogenesis as a
therapeutic target. Nature. 438:967–974. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Weis SM and Cheresh DA: Tumor
angiogenesis: molecular pathways and therapeutic targets. Nat Med.
17:1359–1370. 2011. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Bridges EM and Harris AL: The angiogenic
process as a therapeutic target in cancer. Biochem Pharmacol.
81:1183–1191. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Editorial Committee of the Administration
Bureau of Traditional Chinese Medicine. Saururus Chinensis. Chinese
Materia Medica (Zhonghua Bencao). Shanghai Science and Technology
Press; Shanghai: pp. 2016–2017. 1998
|
10
|
Hwang BY, Lee JH, Nam JB, et al: Lignans
from Saururus chinensis inhibiting the transcription factor
NF-κB. Phytochemistry. 64:765–771. 2003.PubMed/NCBI
|
11
|
Lee YK, Seo CS, Lee CS, et al: Inhibition
of DNA topoisomerases I and II and cytotoxicity by lignans from
Saururus chinensis. Arch Pharm Res. 32:1409–1415. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Sung SH, Kwon SH, Cho NJ and Kim YC:
Hepatoprotective flavonol glycosides of Saururus chinensis
herbs. Phytother Res. 11:500–503. 1997. View Article : Google Scholar
|
13
|
Wang EC, Shih MH, Liu MC, et al: Studies
on constituents of Saururus chinensis. Heterocycles.
43:969–975. 1996. View Article : Google Scholar
|
14
|
Seo BR, Lee KW, Ha J, et al: Saucernetin-7
isolated from Saururus chinensis inhibits proliferation of
human promyelocytic HL-60 leukemia cells via
G0/G1 phase arrest and induction of
differentiation. Carcinogenesis. 25:1387–1394. 2004.
|
15
|
Rho MC, Kwon OE, Kim K, et al: Inhibitory
effects of manassantin A and B isolated from the roots of
Saururus chinensis on PMA-induced ICAM-1 expression. Planta
Med. 69:1147–1149. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu Y, Hong TG, Jin M, et al: Saucerneol G,
a new lignan, from Saururus chinensis inhibits matrix
metalloproteinase-9 induction via a nuclear factor κB and
mitogen activated protein kinases in lipopolysaccharide-stimulated
RAW264.7 cells. Biol Pharm Bull. 33:1944–1948. 2010.PubMed/NCBI
|
17
|
Watanabe K and Jaffe EA: Hypoglycemia
stimulates thrombin-induced PGI2 production by cultured human
umbilical vein endothelial cells. Prostaglandins Leukot Essent
Fatty Acids. 52:251–254. 1995. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bellacen K and Lewis ECJ: Aortic ring
assay. J Vis Exp. 33:15642009.
|
19
|
Lu Y, Hwang SL, Son JK and Chang HW:
Manassantin B isolated from Saururus chinensis inhibits
cyclooxygenase-2-dependent prostaglandin D2 generation
by blocking Fyn-mediated nuclear factor-kappaB and mitogen
activated protein kinase pathways in bone marrow derived-mast
cells. Biol Pharm Bull. 36:1370–1374. 2013.PubMed/NCBI
|
20
|
Park HC, Bae HB, Jeong CW, et al: Effect
of manassantin B, a lignan isolated from Saururus chinensis,
on lipopolysaccharide-induced interleukin-1β in RAW 264.7 cells.
Korean J Anesthesiol. 62:161–165. 2012.PubMed/NCBI
|
21
|
Son KN, Song IS, Shin YH, et al:
Inhibition of NF-IL6 activity by manassantin B, a dilignan isolated
from Saururus chinensis, in phorbol myristate
acetate-stimulated U937 promonocytic cells. Mol Cells. 20:105–111.
2005.PubMed/NCBI
|
22
|
Seo CS, Lee YK, Kim YJ, et al: Protective
effect of lignans against sepsis from the roots of Saururus
chinensis. Biol Pharm Bull. 31:523–526. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hodges TW, Hossain CF, Kim YP, et al:
Molecular-targeted antitumor agents: the Saururus cernuus
dineolignans manassantin B and 4-O-demethylmanassantin B are
potent inhibitors of hypoxia-activated HIF-1. J Nat Prod.
67:767–771. 2004.PubMed/NCBI
|
24
|
Kwon OE, Lee HS, Lee SW, et al:
Manassantin A and B isolated from Saururus chinensis inhibit
TNF-α-induced cell adhesion molecule expression of human umbilical
vein endothelial cells. Arch Pharm Res. 28:55–60. 2005.PubMed/NCBI
|
25
|
Stetler-Stevenson WG: Matrix
metalloproteinases in angiogenesis: a moving target for therapeutic
intervention. J Clin Invest. 103:1237–1241. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rundhaug JE: Matrix metalloproteinases and
angiogenesis. J Cell Mol Med. 9:267–285. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Duffy MJ, Maguire TM, Hill A, et al:
Metalloproteinases: role in breast carcinogenesis, invasion and
metastasis. Breast Cancer Res. 2:252–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Radisky ES and Radisky DC: Matrix
metalloproteinase-induced epithelial-mesenchymal transition in
breast cancer. J Mammary Gland Biol Neoplasia. 15:201–212. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lian JB, Stein JL, Stein GS, et al:
Runx2/Cbfa1 functions: diverse regulation of gene transcription by
chromatin remodeling and co-regulatory protein interactions.
Connect Tissue Res. 44(Suppl 1): S141–S148. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Karsenty G: Role of Cbfa1 in osteoblast
differentiation and function. Semin Cell Dev Biol. 11:343–346.
2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Komori T: Runx2, a multifunctional
transcription factor in skeletal development. J Cell Biochem.
87:1–8. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Stein GS, Lian JB, van Wijnen AJ, et al:
Runx2 control of organization, assembly and activity of the
regulatory machinery for skeletal gene expression. Oncogene.
23:4315–4329. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Barnes GL, Javed A, Waller SM, et al:
Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and
MSX2 mediate the expression of bone sialoprotein in human
metastatic breast cancer cells. Cancer Res. 63:2631–2637.
2003.PubMed/NCBI
|
34
|
Shore P: A role for Runx2 in normal
mammary gland and breast cancer bone metastasis. J Cell Biochem.
96:484–489. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun L, Vitolo M and Passaniti A:
Runt-related gene 2 in endothelial cells: inducible expression and
specific regulation of cell migration and invasion. Cancer Res.
61:4994–5001. 2001.PubMed/NCBI
|
36
|
Qiao M, Shapiro P, Fosbrink M, et al: Cell
cycle-dependent phosphorylation of the RUNX2 transcription factor
by cdc2 regulates endothelial cell proliferation. J Biol Chem.
281:7118–7128. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pratap J, Javed A, Languino LR, et al: The
Runx2 osteogenic transcription factor regulates matrix
metalloproteinase 9 in bone metastatic cancer cells and controls
cell invasion. Mol Cell Biol. 25:8581–8591. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jiménez MJ, Balbín M, López JM, et al:
Collagenase 3 is a target of Cbfa1, a transcription factor of the
runt gene family involved in bone formation. Mol Cell Biol.
19:4431–4442. 1999.PubMed/NCBI
|
39
|
Selvamurugan N and Partridge NC:
Constitutive expression and regulation of collagenase-3 in human
breast cancer cells. Mol Cell Biol Res Commun. 3:218–223. 2000.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Selvamurugan N, Kwok S and Partridge NC:
Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth
factor-beta1-stimulated collagenase-3 expression in human breast
cancer cells. J Biol Chem. 279:27764–27773. 2004. View Article : Google Scholar : PubMed/NCBI
|