|
1
|
Binello E and Germano IM: Targeting glioma
stem cells: a novel framework for brain tumors. Cancer Sci.
102:1958–1966. 2011. View Article : Google Scholar
|
|
2
|
Van Meir EG, Hadjipanayis CG, Norden AD,
et al: Exciting new advances in neuro-oncology: the avenue to a
cure for malignant glioma. CA Cancer J Clin. 60:166–193.
2010.PubMed/NCBI
|
|
3
|
Kensler TW, Wakabayashi N and Biswal S:
Cell survival responses to environmental stresses via the
Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Reuter S, Gupta SC, Chaturvedi MM and
Aggarwal BB: Oxidative stress, inflammation, and cancer: how are
they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li H, Wang F, Zhang L, et al: Modulation
of Nrf2 expression alters high glucose-induced oxidative stress and
antioxidant gene expression in mouse mesangial cells. Cell Signal.
23:1625–1632. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bryan HK, Olayanju A, Goldring CE and Park
BK: The Nrf2 cell defence pathway: Keap1-dependent and -independent
mechanisms of regulation. Biochem Pharmacol. 85:705–717. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Livingston DM and Silver DP: Cancer:
crossing over to drug resistance. Nature. 451:1066–1067. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chen Q, Li W, Wan Y, et al: Amplified in
breast cancer 1 enhances human cholangiocarcinoma growth and
chemoresistance by simultaneous activation of Akt and Nrf2
pathways. Hepatology. 55:1820–1829. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Newlands ES, Stevens MF, Wedge SR, et al:
Temozolomide: a review of its discovery, chemical properties,
pre-clinical development and clinical trials. Cancer Treat Rev.
23:35–61. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Friedman HS, Kerby T and Calvert H:
Temozolomide and treatment of malignant glioma. Clin Cancer Res.
6:2585–2597. 2000.PubMed/NCBI
|
|
12
|
Cong ZX, Wang HD, Zhou Y, et al:
Temozolomide and irradiation combined treatment-induced Nrf2
activation increases chemoradiation sensitivity in human
glioblastoma cells. J Neurooncol. 116:41–48. 2014. View Article : Google Scholar
|
|
13
|
Hu XF, Yao J, Gao SG, et al: Nrf2
overexpression predicts prognosis and 5-fu resistance in gastric
cancer. Asian Pac J Cancer Prev. 14:5231–5235. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jiang T, Chen N, Zhao F, et al: High
levels of Nrf2 determine chemoresistance in type II endometrial
cancer. Cancer Res. 70:5486–5496. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang XJ, Sun Z, Villeneuve NF, et al: Nrf2
enhances resistance of cancer cells to chemotherapeutic drugs, the
dark side of Nrf2. Carcinogenesis. 29:1235–1243. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen CC, Chu CB, Liu KJ, et al: Gene
expression profiling for analysis acquired oxaliplatin resistant
factors in human gastric carcinoma TSGH-S3 cells: the role of IL-6
signaling and Nrf2/AKR1C axis identification. Biochem Pharmacol.
86:872–887. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gao AM, Ke ZP, Shi F, et al: Chrysin
enhances sensitivity of BEL-7402/ADM cells to doxorubicin by
suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact.
206:100–108. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gao AM, Ke ZP, Wang JN, et al: Apigenin
sensitizes doxorubicin-resistant hepatocellular carcinoma
BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2
pathway. Carcinogenesis. 34:1806–1814. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim WD, Kim YW, Cho IJ, et al: E-cadherin
inhibits nuclear accumulation of Nrf2: implications for
chemoresistance of cancer cells. J Cell Sci. 125:1284–1295. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lau A, Villeneuve NF, Sun Z, et al: Dual
roles of Nrf2 in cancer. Pharmacol Res. 58:262–270. 2008.
View Article : Google Scholar
|
|
21
|
Singh A, Wu H, Zhang P, et al: Expression
of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers
side population and chemoresistance phenotype. Mol Cancer Ther.
9:2365–2376. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim JH, Bogner PN, Ramnath N, et al:
Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an
independent prognostic factor for disease recurrence and reduced
survival in stage I non-small cell lung cancer. Clin Cancer Res.
13:3875–3882. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Alexander BM, Ligon KL and Wen PY:
Enhancing radiation therapy for patients with glioblastoma. Expert
Rev Anticancer Ther. 13:569–581. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Caruso C, Carcaterra M and Donato V: Role
of radiotherapy for high grade gliomas management. J Neurosurg Sci.
57:163–169. 2013.PubMed/NCBI
|
|
25
|
Frosina G: DNA repair and resistance of
gliomas to chemotherapy and radiotherapy. Mol Cancer Res.
7:989–999. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Singh A, Bodas M, Wakabayashi N, et al:
Gain of Nrf2 function in non-small-cell lung cancer cells confers
radioresistance. Antioxid Redox Signal. 13:1627–1637. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sharma PK and Varshney R:
2-Deoxy-D-glucose and 6-aminonicotinamide-mediated Nrf2 down
regulation leads to radiosensitization of malignant cells via
abrogation of GSH-mediated defense. Free Radic Res. 46:1446–1457.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang P, Singh A, Yegnasubramanian S, et
al: Loss of Kelch-like ECH-associated protein 1 function in
prostate cancer cells causes chemoresistance and radioresistance
and promotes tumor growth. Mol Cancer Ther. 9:336–346. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Na HK and Surh YJ: Oncogenic potential of
Nrf2 and its principal target protein heme oxygenase-1. Free Radic
Biol Med. 67:353–365. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
DeNicola GM, Karreth FA, Humpton TJ, et
al: Oncogene-induced Nrf2 transcription promotes ROS detoxification
and tumorigenesis. Nature. 475:106–109. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Taguchi K, Motohashi H and Yamamoto M:
Molecular mechanisms of the Keap1-Nrf2 pathway in stress response
and cancer evolution. Genes Cells. 16:123–140. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Brigelius-Flohé R, Müller M, Lippmann D
and Kipp AP: The yin and yang of nrf2-regulated selenoproteins in
carcinogenesis. Int J Cell Biol. 2012:4861472012.PubMed/NCBI
|
|
33
|
Lu SC: Regulation of glutathione
synthesis. Mol Aspects Med. 30:42–59. 2009. View Article : Google Scholar
|
|
34
|
Balan M and Pal S: A novel CXCR3-B
chemokine receptor-induced growth-inhibitory signal in cancer cells
is mediated through the regulation of Bach-1 protein and Nrf2
protein nuclear translocation. J Biol Chem. 289:3126–3137. 2014.
View Article : Google Scholar
|
|
35
|
Yamadori T, Ishii Y, Homma S, et al:
Molecular mechanisms for the regulation of Nrf2-mediated cell
proliferation in non-small-cell lung cancers. Oncogene.
31:4768–4777. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zou W, Chen C, Zhong Y, et al: PI3K/Akt
pathway mediates Nrf2/ARE activation in human L02 hepatocytes
exposed to low-concentration HBCDs. Environ Sci Technol.
47:12434–12440. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kong B, Qia C, Erkan M, et al: Overview on
how oncogenic Kras promotes pancreatic carcinogenesis by inducing
low intracellular ROS levels. Front Physiol. 4:2462013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ji XJ, Chen SH, Zhu L, et al: Knockdown of
NF-E2-related factor 2 inhibits the proliferation and growth of
U251MG human glioma cells in a mouse xenograft model. Oncol Rep.
30:157–164. 2013.PubMed/NCBI
|
|
39
|
Crosas-Molist E, Bertran E, Sancho P, et
al: The NADPH oxidase NOX4 inhibits hepatocyte proliferation and
liver cancer progression. Free Radic Biol Med. 69:338–347. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang Z, Li Y, Lv S and Tian Y: Inhibition
of proliferation and invasiveness of ovarian cancer C13*
cells by a poly(ADP-ribose) polymerase inhibitor and the role of
nuclear factor-κB. J Int Med Res. 41:1577–1585. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Singh A, Happel C, Manna SK, et al:
Transcription factor NRF2 regulates miR-1 and miR-206 to drive
tumorigenesis. J Clin Invest. 123:2921–2934. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Petrelli A, Perra A, Cora D, et al:
MicroRNA/gene profiling unveils early molecular changes and nuclear
factor erythroid related factor 2 (NRF2) activation in a rat model
recapitulating human hepatocellular carcinoma (HCC). Hepatology.
59:228–241. 2014. View Article : Google Scholar
|
|
43
|
Rachakonda G, Sekhar KR, Jowhar D, et al:
Increased cell migration and plasticity in Nrf2-deficient cancer
cell lines. Oncogene. 29:3703–3714. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pan H, Wang H, Zhu L, et al: The role of
Nrf2 in migration and invasion of human glioma cell U251. World
Neurosurg. 80:363–370. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Deryugina EI, Bourdon MA, Luo GX, et al:
Matrix metalloproteinase-2 activation modulates glioma cell
migration. J Cell Sci. 110:2473–2482. 1997.PubMed/NCBI
|
|
46
|
Gan FF, Ling H, Ang X, et al: A novel
shogaol analog suppresses cancer cell invasion and inflammation,
and displays cytoprotective effects through modulation of NF-κB and
Nrf2-Keap1 signaling pathways. Toxicol Appl Pharmacol. 272:852–862.
2013.PubMed/NCBI
|
|
47
|
Zhang L, Wang N, Zhou S, et al: Propofol
induces proliferation and invasion of gallbladder cancer cells
through activation of Nrf2. J Exp Clin Cancer Res. 31:662012.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Thangasamy A, Rogge J, Krishnegowda NK, et
al: Novel function of transcription factor Nrf2 as an inhibitor of
RON tyrosine kinase receptor-mediated cancer cell invasion. J Biol
Chem. 286:32115–32122. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Evan GI and Vousden KH: Proliferation,
cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Johnstone RW, Ruefli AA and Lowe SW:
Apoptosis: a link between cancer genetics and chemotherapy. Cell.
108:153–164. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bat-Chen W, Golan T, Peri I, et al:
Allicin purified from fresh garlic cloves induces apoptosis in
colon cancer cells via Nrf2. Nutr Cancer. 62:947–957. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen X, Liu J and Chen SY: Over-expression
of Nrf2 diminishes ethanol-induced oxidative stress and apoptosis
in neural crest cells by inducing an antioxidant response. Reprod
Toxicol. 42:102–109. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Arlt A, Sebens S, Krebs S, et al:
Inhibition of the Nrf2 transcription factor by the alkaloid
trigonelline renders pancreatic cancer cells more susceptible to
apoptosis through decreased proteasomal gene expression and
proteasome activity. Oncogene. 32:4825–4835. 2013. View Article : Google Scholar
|
|
54
|
Liston P, Fong WG and Korneluk RG: The
inhibitors of apoptosis: there is more to life than Bcl2. Oncogene.
22:8568–8580. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Thomadaki H and Scorilas A: BCL2
family of apoptosis-related genes: functions and clinical
implications in cancer. Crit Rev Clin Lab Sci. 43:1–67. 2006.
View Article : Google Scholar
|
|
56
|
Heasman SA, Zaitseva L, Bowles KM, et al:
Protection of acute myeloid leukaemia cells from apoptosis induced
by front-line chemotherapeutics is mediated by haem oxygenase-1.
Oncotarget. 2:658–668. 2011.PubMed/NCBI
|
|
57
|
Niture SK and Jaiswal AK: INrf2 (Keap1)
targets Bcl-2 degradation and controls cellular apoptosis. Cell
Death Differ. 18:439–451. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Attardi LD: The role of p53-mediated
apoptosis as a crucial anti-tumor response to genomic instability:
lessons from mouse models. Mutat Res. 569:145–157. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rotblat B, Melino G and Knight RA: NRF2
and p53: Januses in cancer? Oncotarget. 3:1272–1283.
2012.PubMed/NCBI
|
|
60
|
Filomeni G, Piccirillo S, Rotilio G and
Ciriolo MR: p38MAPK and ERK1/2 dictate cell
death/survival response to different pro-oxidant stimuli via
p53 and Nrf2 in neuroblastoma cells SH-SY5Y. Biochem Pharmacol.
83:1349–1357. 2012.
|
|
61
|
Lee YM, Auh QS, Lee DW, et al: Involvement
of Nrf2-mediated upregulation of heme oxygenase-1 in
mollugin-induced growth inhibition and apoptosis in human oral
cancer cells. Biomed Res Int. 2013:2106042013.PubMed/NCBI
|
|
62
|
Sell S: Stem cell origin of cancer and
differentiation therapy. Crit Rev Oncol Hematol. 51:1–28. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bollag W and Holdener EE: Retinoids in
cancer prevention and therapy. Ann Oncol. 3:513–526.
1992.PubMed/NCBI
|
|
64
|
Clarke N, Germain P, Altucci L and
Gronemeyer H: Retinoids: potential in cancer prevention and
therapy. Expert Rev Mol Med. 6:1–23. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hansen LA, Sigman CC, Andreola F, et al:
Retinoids in chemoprevention and differentiation therapy.
Carcinogenesis. 21:1271–1279. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Leszczyniecka M, Roberts T, Dent P, et al:
Differentiation therapy of human cancer: basic science and clinical
applications. Pharmacol Ther. 90:105–156. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bobilev I, Novik V, Levi I, et al: The
Nrf2 transcription factor is a positive regulator of myeloid
differentiation of acute myeloid leukemia cells. Cancer Biol Ther.
11:317–329. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li K, Zhong C, Wang B, et al: Nrf2
expression participates in growth and differentiation of
endometrial carcinoma cells in vitro and in vivo. J Mol Histol.
45:161–167. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Capaccione KM and Pine SR: The Notch
signaling pathway as a mediator of tumor survival. Carcinogenesis.
34:1420–1430. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wakabayashi N, Skoko JJ, Chartoumpekis DV,
et al: Notch-Nrf2 axis: regulation of Nrf2 gene expression
and cytoprotection by Notch signaling. Mol Cell Biol. 34:653–663.
2014.PubMed/NCBI
|
|
71
|
Kanzaki H, Shinohara F, Kajiya M and
Kodama T: The Keap1/Nrf2 protein axis plays a role in osteoclast
differentiation by regulating intracellular reactive oxygen species
signaling. J Biol Chem. 288:23009–23020. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jayakumar S, Kunwar A, Sandur SK, et al:
Differential response of DU145 and PC3 prostate cancer cells to
ionizing radiation: role of reactive oxygen species, GSH and Nrf2
in radiosensitivity. Biochim Biophys Acta. 1840:485–494. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang XJ, Hayes JD, Henderson CJ and Wolf
CR: Identification of retinoic acid as an inhibitor of
transcription factor Nrf2 through activation of retinoic acid
receptor alpha. Proc Natl Acad Sci USA. 104:19589–19594. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tan KP, Kosuge K, Yang M and Ito S: NRF2
as a determinant of cellular resistance in retinoic acid
cytotoxicity. Free Radic Biol Med. 45:1663–1673. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kondo Y, Kanzawa T, Sawaya R and Kondo S:
The role of autophagy in cancer development and response to
therapy. Nat Rev Cancer. 5:726–734. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhou Y, Wang HD, Zhu L, et al: Knockdown
of Nrf2 enhances autophagy induced by temozolomide in U251 human
glioma cell line. Oncol Rep. 29:394–400. 2013.PubMed/NCBI
|
|
79
|
Fan W, Tang Z, Chen D, et al: Keap1
facilitates p62-mediated ubiquitin aggregate clearance via
autophagy. Autophagy. 6:614–621. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kwon J, Han E, Bui CB, et al: Assurance of
mitochondrial integrity and mammalian longevity by the
p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep. 13:150–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Inami Y, Waguri S, Sakamoto A, et al:
Persistent activation of Nrf2 through p62 in hepatocellular
carcinoma cells. J Cell Biol. 193:275–284. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Digaleh H, Kiaei M and Khodagholi F: Nrf2
and Nrf1 signaling and ER stress crosstalk: implication for
proteasomal degradation and autophagy. Cell Mol Life Sci.
70:4681–4694. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Singh SK, Hawkins C, Clarke ID, et al:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Singh SK, Clarke ID, Terasaki M, et al:
Identification of a cancer stem cell in human brain tumors. Cancer
Res. 63:5821–5828. 2003.PubMed/NCBI
|
|
86
|
Bao S, Wu Q, McLendon RE, et al: Glioma
stem cells promote radioresistance by preferential activation of
the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhu J, Wang H, Sun Q, et al: Nrf2 is
required to maintain the self-renewal of glioma stem cells. BMC
Cancer. 13:3802013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tsai JJ, Dudakov JA, Takahashi K, et al:
Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol.
15:309–316. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang K, Zhang T, Dong Q, et al: Redox
homeostasis: the linchpin in stem cell self-renewal and
differentiation. Cell Death Dis. 4:e5372013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cai C, Teng L, Vu D, et al: The heme
oxygenase 1 inducer (CoPP) protects human cardiac stem cells
against apoptosis through activation of the extracellular
signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine
release. J Biol Chem. 287:33720–33732. 2012. View Article : Google Scholar
|
|
91
|
Loseva P, Kostyuk S, Malinovskaya E, et
al: Extracellular DNA oxidation stimulates activation of NRF2 and
reduces the production of ROS in human mesenchymal stem cells.
Expert Opin Biol Ther. 12(Suppl 1): S85–S97. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hoelzinger DB, Demuth T and Berens ME:
Autocrine factors that sustain glioma invasion and paracrine
biology in the brain microenvironment. J Natl Cancer Inst.
99:1583–1593. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Joyce JA and Pollard JW:
Microenvironmental regulation of metastasis. Nat Rev Cancer.
9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bergers G and Benjamin LE: Tumorigenesis
and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003.
View Article : Google Scholar
|
|
95
|
Folkins C, Man S, Xu P, et al: Anticancer
therapies combining antiangiogenic and tumor cell cytotoxic effects
reduce the tumor stem-like cell fraction in glioma xenograft
tumors. Cancer Res. 67:3560–3564. 2007. View Article : Google Scholar
|
|
96
|
Zhou S, Ye W, Zhang M and Liang J: The
effects of nrf2 on tumor angiogenesis: a review of the possible
mechanisms of action. Crit Rev Eukaryot Gene Expr. 22:149–160.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ashino T, Yamamoto M, Yoshida T and
Numazawa S: Redox-sensitive transcription factor Nrf2 regulates
vascular smooth muscle cell migration and neointimal hyperplasia.
Arterioscler Thromb Vasc Biol. 33:760–768. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kaur B, Khwaja FW, Severson EA, et al:
Hypoxia and the hypoxia-inducible-factor pathway in glioma growth
and angiogenesis. Neuro Oncol. 7:134–153. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kweider N, Fragoulis A, Rosen C, et al:
Interplay between vascular endothelial growth factor (VEGF) and
nuclear factor erythroid 2-related factor-2 (Nrf2): implications
for preeclampsia. J Biol Chem. 286:42863–42872. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kim TH, Hur EG, Kang SJ, et al: NRF2
blockade suppresses colon tumor angiogenesis by inhibiting
hypoxia-induced activation of HIF-1α. Cancer Res. 71:2260–2275.
2011.PubMed/NCBI
|
|
101
|
Ji RC: Hypoxia and lymphangiogenesis in
tumor microenvironment and metastasis. Cancer Lett. 346:6–16. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Emara M and Allalunis-Turner J: Effect of
hypoxia on angiogenesis related factors in glioblastoma cells.
Oncol Rep. 31:1947–1953. 2014.PubMed/NCBI
|
|
103
|
Marampon F, Gravina GL, Zani BM, et al:
Hypoxia sustains glioblastoma radioresistance through
ERKs/DNA-PKcs/HIF-1α functional interplay. Int J Oncol.
44:2121–2131. 2014.PubMed/NCBI
|
|
104
|
Ji X, Wang H, Zhu J, et al: Knockdown of
Nrf2 suppresses glioblastoma angiogenesis by inhibiting
hypoxia-induced activation of HIF-1α. Int J Cancer. 135:574–584.
2014.PubMed/NCBI
|
|
105
|
Ji X, Wang H, Zhu J, et al: Correlation of
Nrf2 and HIF-1α in glioblastoma and their relationships to
clinicopathologic features and survival. Neurol Res. 35:1044–1050.
2013.
|
|
106
|
Shen H, Yang Y, Xia S, et al: Blockage of
Nrf2 suppresses the migration and invasion of esophageal squamous
cell carcinoma cells in hypoxic microenvironment. Dis Esophagus.
Sep 13–2013.(Epub ahead of print).
|
|
107
|
Lee C, Park GH and Jang JH: Cellular
antioxidant adaptive survival response to 6-hydroxydopamine-induced
nitrosative cell death in C6 glioma cells. Toxicology. 283:118–128.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Meisen WH and Kaur B: How can we trick the
immune system into overcoming the detrimental effects of oncolytic
viral therapy to treat glioblastoma? Expert Rev Neurother.
13:341–343. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Al-Huseini LM, Aw Yeang HX, Sethu S, et
al: Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2)
modulates dendritic cell immune function through regulation of p38
MAPK-cAMP-responsive element binding protein/activating
transcription factor 1 signaling. J Biol Chem. 288:22281–22288.
2013. View Article : Google Scholar
|
|
110
|
Thimmulappa RK, Lee H, Rangasamy T, et al:
Nrf2 is a critical regulator of the innate immune response and
survival during experimental sepsis. J Clin Invest. 116:984–995.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Rockwell CE, Zhang M, Fields PE and
Klaassen CD: Th2 skewing by activation of Nrf2 in CD4+ T
cells. J Immunol. 188:1630–1637. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Foresti R, Bains SK, Pitchumony TS, et al:
Small molecule activators of the Nrf2-HO-1 antioxidant axis
modulate heme metabolism and inflammation in BV2 microglia cells.
Pharmacol Res. 76:132–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Limonciel A and Jennings P: A review of
the evidence that ochratoxin A is an Nrf2 inhibitor: implications
for nephrotoxicity and renal carcinogenicity. Toxins. 6:371–379.
2014. View Article : Google Scholar : PubMed/NCBI
|