Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2014 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2014 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review)

  • Authors:
    • Jianhong Zhu
    • Handong Wang
    • Youwu Fan
    • Yixing Lin
    • Li  Zhang
    • Xiangjun Ji
    • Mengliang Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
  • Pages: 443-450
    |
    Published online on: June 12, 2014
       https://doi.org/10.3892/or.2014.3259
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Binello E and Germano IM: Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci. 102:1958–1966. 2011. View Article : Google Scholar

2 

Van Meir EG, Hadjipanayis CG, Norden AD, et al: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 60:166–193. 2010.PubMed/NCBI

3 

Kensler TW, Wakabayashi N and Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Li H, Wang F, Zhang L, et al: Modulation of Nrf2 expression alters high glucose-induced oxidative stress and antioxidant gene expression in mouse mesangial cells. Cell Signal. 23:1625–1632. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Bryan HK, Olayanju A, Goldring CE and Park BK: The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 85:705–717. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Livingston DM and Silver DP: Cancer: crossing over to drug resistance. Nature. 451:1066–1067. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Chen Q, Li W, Wan Y, et al: Amplified in breast cancer 1 enhances human cholangiocarcinoma growth and chemoresistance by simultaneous activation of Akt and Nrf2 pathways. Hepatology. 55:1820–1829. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Stupp R, Mason WP, van den Bent MJ, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Newlands ES, Stevens MF, Wedge SR, et al: Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 23:35–61. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Friedman HS, Kerby T and Calvert H: Temozolomide and treatment of malignant glioma. Clin Cancer Res. 6:2585–2597. 2000.PubMed/NCBI

12 

Cong ZX, Wang HD, Zhou Y, et al: Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol. 116:41–48. 2014. View Article : Google Scholar

13 

Hu XF, Yao J, Gao SG, et al: Nrf2 overexpression predicts prognosis and 5-fu resistance in gastric cancer. Asian Pac J Cancer Prev. 14:5231–5235. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Jiang T, Chen N, Zhao F, et al: High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70:5486–5496. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Wang XJ, Sun Z, Villeneuve NF, et al: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 29:1235–1243. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Chen CC, Chu CB, Liu KJ, et al: Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: the role of IL-6 signaling and Nrf2/AKR1C axis identification. Biochem Pharmacol. 86:872–887. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Gao AM, Ke ZP, Shi F, et al: Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact. 206:100–108. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Gao AM, Ke ZP, Wang JN, et al: Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis. 34:1806–1814. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Kim WD, Kim YW, Cho IJ, et al: E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J Cell Sci. 125:1284–1295. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Lau A, Villeneuve NF, Sun Z, et al: Dual roles of Nrf2 in cancer. Pharmacol Res. 58:262–270. 2008. View Article : Google Scholar

21 

Singh A, Wu H, Zhang P, et al: Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther. 9:2365–2376. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Kim JH, Bogner PN, Ramnath N, et al: Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer. Clin Cancer Res. 13:3875–3882. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Alexander BM, Ligon KL and Wen PY: Enhancing radiation therapy for patients with glioblastoma. Expert Rev Anticancer Ther. 13:569–581. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Caruso C, Carcaterra M and Donato V: Role of radiotherapy for high grade gliomas management. J Neurosurg Sci. 57:163–169. 2013.PubMed/NCBI

25 

Frosina G: DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res. 7:989–999. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Singh A, Bodas M, Wakabayashi N, et al: Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal. 13:1627–1637. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Sharma PK and Varshney R: 2-Deoxy-D-glucose and 6-aminonicotinamide-mediated Nrf2 down regulation leads to radiosensitization of malignant cells via abrogation of GSH-mediated defense. Free Radic Res. 46:1446–1457. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Zhang P, Singh A, Yegnasubramanian S, et al: Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther. 9:336–346. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Na HK and Surh YJ: Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic Biol Med. 67:353–365. 2014. View Article : Google Scholar : PubMed/NCBI

30 

DeNicola GM, Karreth FA, Humpton TJ, et al: Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 475:106–109. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Taguchi K, Motohashi H and Yamamoto M: Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 16:123–140. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Brigelius-Flohé R, Müller M, Lippmann D and Kipp AP: The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int J Cell Biol. 2012:4861472012.PubMed/NCBI

33 

Lu SC: Regulation of glutathione synthesis. Mol Aspects Med. 30:42–59. 2009. View Article : Google Scholar

34 

Balan M and Pal S: A novel CXCR3-B chemokine receptor-induced growth-inhibitory signal in cancer cells is mediated through the regulation of Bach-1 protein and Nrf2 protein nuclear translocation. J Biol Chem. 289:3126–3137. 2014. View Article : Google Scholar

35 

Yamadori T, Ishii Y, Homma S, et al: Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers. Oncogene. 31:4768–4777. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Zou W, Chen C, Zhong Y, et al: PI3K/Akt pathway mediates Nrf2/ARE activation in human L02 hepatocytes exposed to low-concentration HBCDs. Environ Sci Technol. 47:12434–12440. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Kong B, Qia C, Erkan M, et al: Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels. Front Physiol. 4:2462013. View Article : Google Scholar : PubMed/NCBI

38 

Ji XJ, Chen SH, Zhu L, et al: Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model. Oncol Rep. 30:157–164. 2013.PubMed/NCBI

39 

Crosas-Molist E, Bertran E, Sancho P, et al: The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression. Free Radic Biol Med. 69:338–347. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Wang Z, Li Y, Lv S and Tian Y: Inhibition of proliferation and invasiveness of ovarian cancer C13* cells by a poly(ADP-ribose) polymerase inhibitor and the role of nuclear factor-κB. J Int Med Res. 41:1577–1585. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Singh A, Happel C, Manna SK, et al: Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest. 123:2921–2934. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Petrelli A, Perra A, Cora D, et al: MicroRNA/gene profiling unveils early molecular changes and nuclear factor erythroid related factor 2 (NRF2) activation in a rat model recapitulating human hepatocellular carcinoma (HCC). Hepatology. 59:228–241. 2014. View Article : Google Scholar

43 

Rachakonda G, Sekhar KR, Jowhar D, et al: Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene. 29:3703–3714. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Pan H, Wang H, Zhu L, et al: The role of Nrf2 in migration and invasion of human glioma cell U251. World Neurosurg. 80:363–370. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Deryugina EI, Bourdon MA, Luo GX, et al: Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci. 110:2473–2482. 1997.PubMed/NCBI

46 

Gan FF, Ling H, Ang X, et al: A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways. Toxicol Appl Pharmacol. 272:852–862. 2013.PubMed/NCBI

47 

Zhang L, Wang N, Zhou S, et al: Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J Exp Clin Cancer Res. 31:662012. View Article : Google Scholar : PubMed/NCBI

48 

Thangasamy A, Rogge J, Krishnegowda NK, et al: Novel function of transcription factor Nrf2 as an inhibitor of RON tyrosine kinase receptor-mediated cancer cell invasion. J Biol Chem. 286:32115–32122. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Evan GI and Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Johnstone RW, Ruefli AA and Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 108:153–164. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Bat-Chen W, Golan T, Peri I, et al: Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr Cancer. 62:947–957. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Chen X, Liu J and Chen SY: Over-expression of Nrf2 diminishes ethanol-induced oxidative stress and apoptosis in neural crest cells by inducing an antioxidant response. Reprod Toxicol. 42:102–109. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Arlt A, Sebens S, Krebs S, et al: Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene. 32:4825–4835. 2013. View Article : Google Scholar

54 

Liston P, Fong WG and Korneluk RG: The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene. 22:8568–8580. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Thomadaki H and Scorilas A: BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci. 43:1–67. 2006. View Article : Google Scholar

56 

Heasman SA, Zaitseva L, Bowles KM, et al: Protection of acute myeloid leukaemia cells from apoptosis induced by front-line chemotherapeutics is mediated by haem oxygenase-1. Oncotarget. 2:658–668. 2011.PubMed/NCBI

57 

Niture SK and Jaiswal AK: INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis. Cell Death Differ. 18:439–451. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Attardi LD: The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res. 569:145–157. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Rotblat B, Melino G and Knight RA: NRF2 and p53: Januses in cancer? Oncotarget. 3:1272–1283. 2012.PubMed/NCBI

60 

Filomeni G, Piccirillo S, Rotilio G and Ciriolo MR: p38MAPK and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y. Biochem Pharmacol. 83:1349–1357. 2012.

61 

Lee YM, Auh QS, Lee DW, et al: Involvement of Nrf2-mediated upregulation of heme oxygenase-1 in mollugin-induced growth inhibition and apoptosis in human oral cancer cells. Biomed Res Int. 2013:2106042013.PubMed/NCBI

62 

Sell S: Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 51:1–28. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Bollag W and Holdener EE: Retinoids in cancer prevention and therapy. Ann Oncol. 3:513–526. 1992.PubMed/NCBI

64 

Clarke N, Germain P, Altucci L and Gronemeyer H: Retinoids: potential in cancer prevention and therapy. Expert Rev Mol Med. 6:1–23. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Hansen LA, Sigman CC, Andreola F, et al: Retinoids in chemoprevention and differentiation therapy. Carcinogenesis. 21:1271–1279. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Leszczyniecka M, Roberts T, Dent P, et al: Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther. 90:105–156. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Bobilev I, Novik V, Levi I, et al: The Nrf2 transcription factor is a positive regulator of myeloid differentiation of acute myeloid leukemia cells. Cancer Biol Ther. 11:317–329. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Li K, Zhong C, Wang B, et al: Nrf2 expression participates in growth and differentiation of endometrial carcinoma cells in vitro and in vivo. J Mol Histol. 45:161–167. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Capaccione KM and Pine SR: The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis. 34:1420–1430. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Wakabayashi N, Skoko JJ, Chartoumpekis DV, et al: Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by Notch signaling. Mol Cell Biol. 34:653–663. 2014.PubMed/NCBI

71 

Kanzaki H, Shinohara F, Kajiya M and Kodama T: The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem. 288:23009–23020. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Jayakumar S, Kunwar A, Sandur SK, et al: Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity. Biochim Biophys Acta. 1840:485–494. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Wang XJ, Hayes JD, Henderson CJ and Wolf CR: Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci USA. 104:19589–19594. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Tan KP, Kosuge K, Yang M and Ito S: NRF2 as a determinant of cellular resistance in retinoic acid cytotoxicity. Free Radic Biol Med. 45:1663–1673. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Kondo Y, Kanzawa T, Sawaya R and Kondo S: The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 5:726–734. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Zhou Y, Wang HD, Zhu L, et al: Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep. 29:394–400. 2013.PubMed/NCBI

79 

Fan W, Tang Z, Chen D, et al: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy. 6:614–621. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Kwon J, Han E, Bui CB, et al: Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep. 13:150–156. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Inami Y, Waguri S, Sakamoto A, et al: Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 193:275–284. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Digaleh H, Kiaei M and Khodagholi F: Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol Life Sci. 70:4681–4694. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Singh SK, Hawkins C, Clarke ID, et al: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Singh SK, Clarke ID, Terasaki M, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI

86 

Bao S, Wu Q, McLendon RE, et al: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Zhu J, Wang H, Sun Q, et al: Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer. 13:3802013. View Article : Google Scholar : PubMed/NCBI

88 

Tsai JJ, Dudakov JA, Takahashi K, et al: Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol. 15:309–316. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Wang K, Zhang T, Dong Q, et al: Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4:e5372013. View Article : Google Scholar : PubMed/NCBI

90 

Cai C, Teng L, Vu D, et al: The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem. 287:33720–33732. 2012. View Article : Google Scholar

91 

Loseva P, Kostyuk S, Malinovskaya E, et al: Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opin Biol Ther. 12(Suppl 1): S85–S97. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Hoelzinger DB, Demuth T and Berens ME: Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 99:1583–1593. 2007. View Article : Google Scholar : PubMed/NCBI

93 

Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Bergers G and Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003. View Article : Google Scholar

95 

Folkins C, Man S, Xu P, et al: Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 67:3560–3564. 2007. View Article : Google Scholar

96 

Zhou S, Ye W, Zhang M and Liang J: The effects of nrf2 on tumor angiogenesis: a review of the possible mechanisms of action. Crit Rev Eukaryot Gene Expr. 22:149–160. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Ashino T, Yamamoto M, Yoshida T and Numazawa S: Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia. Arterioscler Thromb Vasc Biol. 33:760–768. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Kaur B, Khwaja FW, Severson EA, et al: Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 7:134–153. 2005. View Article : Google Scholar : PubMed/NCBI

99 

Kweider N, Fragoulis A, Rosen C, et al: Interplay between vascular endothelial growth factor (VEGF) and nuclear factor erythroid 2-related factor-2 (Nrf2): implications for preeclampsia. J Biol Chem. 286:42863–42872. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Kim TH, Hur EG, Kang SJ, et al: NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res. 71:2260–2275. 2011.PubMed/NCBI

101 

Ji RC: Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett. 346:6–16. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Emara M and Allalunis-Turner J: Effect of hypoxia on angiogenesis related factors in glioblastoma cells. Oncol Rep. 31:1947–1953. 2014.PubMed/NCBI

103 

Marampon F, Gravina GL, Zani BM, et al: Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay. Int J Oncol. 44:2121–2131. 2014.PubMed/NCBI

104 

Ji X, Wang H, Zhu J, et al: Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Int J Cancer. 135:574–584. 2014.PubMed/NCBI

105 

Ji X, Wang H, Zhu J, et al: Correlation of Nrf2 and HIF-1α in glioblastoma and their relationships to clinicopathologic features and survival. Neurol Res. 35:1044–1050. 2013.

106 

Shen H, Yang Y, Xia S, et al: Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. Sep 13–2013.(Epub ahead of print).

107 

Lee C, Park GH and Jang JH: Cellular antioxidant adaptive survival response to 6-hydroxydopamine-induced nitrosative cell death in C6 glioma cells. Toxicology. 283:118–128. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Meisen WH and Kaur B: How can we trick the immune system into overcoming the detrimental effects of oncolytic viral therapy to treat glioblastoma? Expert Rev Neurother. 13:341–343. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Al-Huseini LM, Aw Yeang HX, Sethu S, et al: Nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem. 288:22281–22288. 2013. View Article : Google Scholar

110 

Thimmulappa RK, Lee H, Rangasamy T, et al: Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 116:984–995. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Rockwell CE, Zhang M, Fields PE and Klaassen CD: Th2 skewing by activation of Nrf2 in CD4+ T cells. J Immunol. 188:1630–1637. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Foresti R, Bains SK, Pitchumony TS, et al: Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res. 76:132–148. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Limonciel A and Jennings P: A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins. 6:371–379. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X and Zhou M: Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review). Oncol Rep 32: 443-450, 2014.
APA
Zhu, J., Wang, H., Fan, Y., Lin, Y., Zhang, L., Ji, X., & Zhou, M. (2014). Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review). Oncology Reports, 32, 443-450. https://doi.org/10.3892/or.2014.3259
MLA
Zhu, J., Wang, H., Fan, Y., Lin, Y., Zhang, L., Ji, X., Zhou, M."Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review)". Oncology Reports 32.2 (2014): 443-450.
Chicago
Zhu, J., Wang, H., Fan, Y., Lin, Y., Zhang, L., Ji, X., Zhou, M."Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review)". Oncology Reports 32, no. 2 (2014): 443-450. https://doi.org/10.3892/or.2014.3259
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X and Zhou M: Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review). Oncol Rep 32: 443-450, 2014.
APA
Zhu, J., Wang, H., Fan, Y., Lin, Y., Zhang, L., Ji, X., & Zhou, M. (2014). Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review). Oncology Reports, 32, 443-450. https://doi.org/10.3892/or.2014.3259
MLA
Zhu, J., Wang, H., Fan, Y., Lin, Y., Zhang, L., Ji, X., Zhou, M."Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review)". Oncology Reports 32.2 (2014): 443-450.
Chicago
Zhu, J., Wang, H., Fan, Y., Lin, Y., Zhang, L., Ji, X., Zhou, M."Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review)". Oncology Reports 32, no. 2 (2014): 443-450. https://doi.org/10.3892/or.2014.3259
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team