1
|
Wojtyla A, Gladych M and Rubis B: Human
telomerase activity regulation. Mol Biol Rep. 38:3339–3349. 2011.
View Article : Google Scholar
|
2
|
Harley CB: Telomerase and cancer
therapeutics. Nat Rev Cancer. 8:167–179. 2008. View Article : Google Scholar
|
3
|
Kim NW, Piatyszek MA, Prowse KR, et al:
Specific association of human telomerase activity with immortal
cells and cancer. Science. 266:2011–2015. 1994. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stewart SA and Weinberg RA: Telomeres:
cancer to human aging. Annu Rev Cell Dev Biol. 22:531–557. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Land H, Parada LF and Weinberg RA:
Tumorigenic conversion of primary embryo fibroblasts requires at
least two cooperating oncogenes. Nature. 304:596–602. 1983.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu KJ, Grandori C, Amacker M, et al:
Direct activation of TERT transcription by c-MYC. Nat Genet.
21:220–224. 1999. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Greenberg RA, O’Hagan RC, Deng H, et al:
Telomerase reverse transcriptase gene is a direct target of c-Myc
but is not functionally equivalent in cellular transformation.
Oncogene. 18:1219–1226. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kyo S, Takakura M, Fujiwara T and Inoue M:
Understanding and exploiting hTERT promoter regulation for
diagnosis and treatment of human cancers. Cancer Sci. 99:1528–1538.
2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Matsumura I, Tanaka H and Kanakura Y: E2F1
and c-Myc in cell growth and death. Cell Cycle. 2:333–338. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Coller HA, Forman JJ and Legesse-Miller A:
‘Myc’ed messages’: myc induces transcription of E2F1 while
inhibiting its translation via a microRNA polycistron. PLoS Genet.
3:e1462007.
|
11
|
Crowe DL, Nguyen DC, Tsang KJ and Kyo S:
E2F-1 represses transcription of the human telomerase reverse
transcriptase gene. Nucleic Acids Res. 29:2789–2794. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Won J, Chang S, Oh S and Kim TK:
Small-molecule-based identification of dynamic assembly of
E2F-pocket protein-histone deacetylase complex for telomerase
regulation in human cells. Proc Natl Acad Sci USA. 101:11328–11333.
2004. View Article : Google Scholar
|
13
|
Lacerte A, Korah J, Roy M, Yang XJ, Lemay
S and Lebrun JJ: Transforming growth factor-beta inhibits
telomerase through SMAD3 and E2F transcription factors. Cell
Signal. 20:50–59. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar
|
15
|
O’Donnell KA, Wentzel EA, Zeller KI, Dang
CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1
expression. Nature. 435:839–843. 2005.PubMed/NCBI
|
16
|
He L, Thomson JM, Hemann MT, et al: A
microRNA polycistron as a potential human oncogene. Nature.
435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nagel S, Venturini L, Przybylski GK, et
al: Activation of miR-17-92 by NK-like homeodomain proteins
suppresses apoptosis via reduction of E2F1 in T-cell acute
lymphoblastic leukemia. Leuk Lymphoma. 50:101–108. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chang TC, Yu D, Lee YS, et al: Widespread
microRNA repression by Myc contributes to tumorigenesis. Nat Genet.
40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sylvestre Y, De Guire V, Querido E, et al:
An E2F/miR-20a autoregulatory feedback loop. J Biol Chem.
282:2135–2143. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Y, Li Y, Zhang H and Chen Y:
MicroRNA-mediated positive feedback loop and optimized bistable
switch in a cancer network involving miR-17-92. PLoS One.
6:e263022011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wong JV, Yao G, Nevins JR and You L:
Viral-mediated noisy gene expression reveals biphasic E2f1 response
to MYC. Mol Cell. 41:275–285. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Aguda BD, Kim Y, Piper-Hunter MG, Friedman
A and Marsh CB: MicroRNA regulation of a cancer network:
consequences of the feedback loops involving miR-17-92, E2F, and
Myc. Proc Natl Acad Sci USA. 105:19678–19683. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liang GP, Luo XD and Yang ZC: Influence of
human telomerase reverse transcriptase gene transfection on the
proliferation of human embryonic fibroblasts. Zhonghua Shao Shang
Za Zhi. 21:30–32. 2005.(In Chinese).
|
24
|
Yang SM, Fang DC, Yang JL, Chen L, Luo YH
and Liang GP: Antisense human telomerase reverse transcriptase
could partially reverse malignant phenotypes of gastric carcinoma
cell line in vitro. Eur J Cancer Prev. 17:209–217. 2008. View Article : Google Scholar
|
25
|
Zhang YF, Li XH, Shi YQ, et al: CIAPIN1
confers multidrug resistance through up-regulation of MDR-1 and
Bcl-L in LoVo/Adr cells and is independent of p53. Oncol Rep.
25:1091–1098. 2011.PubMed/NCBI
|
26
|
McNabb DS, Reed R and Marciniak RA: Dual
luciferase assay system for rapid assessment of gene expression in
Saccharomyces cerevisiae. Eukaryot Cell. 4:1539–1549. 2005.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Rounbehler RJ, Rogers PM, Conti CJ and
Johnson DG: Inactivation of E2f1 enhances tumorigenesis in a Myc
transgenic model. Cancer Res. 62:3276–3281. 2002.PubMed/NCBI
|
29
|
Rounbehler RJ, Schneider-Broussard R,
Conti CJ and Johnson DG: Myc lacks E2F1’s ability to suppress skin
carcinogenesis. Oncogene. 20:5341–5349. 2001.
|
30
|
Baudino TA, Maclean KH, Brennan J, et al:
Myc-mediated proliferation and lymphomagenesis, but not apoptosis,
are compromised by E2f1 loss. Mol Cell. 11:905–914. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Conner EA, Lemmer ER, Sánchez A, Factor VM
and Thorgeirsson SS: E2F1 blocks and c-Myc accelerates hepatic
ploidy in transgenic mouse models. Biochem Biophys Res Commun.
302:114–120. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Engelmann D and Pützer BM: The dark side
of E2F1: in transit beyond apoptosis. Cancer Res. 72:571–575. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Polager S and Ginsberg D: p53 and E2f:
partners in life and death. Nat Rev Cancer. 9:738–748. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu Z and Yu Q: E2F1-mediated apoptosis as
a target of cancer therapy. Curr Mol Pharmacol. 2:149–160. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Leone G, Sears R, Huang E, et al: Myc
requires distinct E2F activities to induce S phase and apoptosis.
Mol Cell. 8:105–113. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Herold S, Herkert B and Eilers M:
Facilitating replication under stress: an oncogenic function of
MYC? Nat Rev Cancer. 9:441–444. 2009. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Park JK, Chung YM, Kang S, et al: c-Myc
exerts a protective function through ornithine decarboxylase
against cellular insults. Mol Pharmacol. 62:1400–1408. 2002.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Lü MH, Liao ZL, Zhao XY, et al:
hTERT-based therapy: A universal anticancer approach (Review).
Oncol Rep. 28:1945–1952. 2012.PubMed/NCBI
|
39
|
Olive V, Jiang I and He L: mir-17–92, a
cluster of miRNAs in the midst of the cancer network. Int J Biochem
Cell Biol. 42:1348–1354. 2010.
|
40
|
Zhang Y and Fang D, Yang S and Fang D:
E2F1: a potential negative regulator of hTERT transcription in
normal cells upon activation of oncogenic c-Myc. Med Sci Monit.
18:RA12–RA15. 2012. View Article : Google Scholar : PubMed/NCBI
|