1
|
Germano IM, Emdad L, Qadeer ZA, Binello E
and Uzzaman M: Embryonic stem cell (ESC)-mediated transgene
delivery induces growth suppression, apoptosis and
radiosensitization, and overcomes temozolomide resistance in
malignant gliomas. Cancer Gene Ther. 17:664–674. 2010. View Article : Google Scholar
|
2
|
Davis FG, Freels S, Grutsch J, Barlas S
and Brem S: Survival rates in patients with primary malignant brain
tumors stratified by patient age and tumor histological type: an
analysis based on Surveillance, Epidemiology, and End Results
(SEER) data, 1973–1991. J Neurosurg. 88:1–10. 1998.PubMed/NCBI
|
3
|
Shrieve DC, Alexander E III, Black PM, et
al: Treatment of patients with primary glioblastoma multiforme with
standard postoperative radiotherapy and radiosurgical boost:
prognostic factors and long-term outcome. J Neurosurg. 90:72–77.
1999. View Article : Google Scholar
|
4
|
Yang YZ, Tang YZ and Liu YH: Wogonoside
displays anti-inflammatory effects through modulating inflammatory
mediator expression using RAW264.7 cells. J Ethnopharmacol.
148:271–276. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hui KM, Huen MS, Wang HY, et al:
Anxiolytic effect of wogonin, a benzodiazepine receptor ligand
isolated from Scutellaria baicalensis Georgi. Biochem
Pharmacol. 64:1415–1424. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li C, Lin G and Zuo Z: Pharmacological
effects and pharmacokinetics properties of Radix
Scutellariae and its bioactive flavones. Biopharm Drug Dispos.
32:427–445. 2011.
|
7
|
Sun Y, Zou M, Hu C, et al: Wogonoside
induces autophagy in MDA-MB-231 cells by regulating MAPK-mTOR
pathway. Food Chem Toxicol. 51:53–60. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ikemoto S, Sugimura K, Yoshida N, et al:
Antitumor effects of Scutellariae radix and its components
baicalein, baicalin, and wogonin on bladder cancer cell lines.
Urology. 55:951–955. 2000.
|
9
|
Chen Y, Hui H, Yang H, et al: Wogonoside
induces cell cycle arrest and differentiation by affecting
expression and subcellular localization of PLSCR1 in AML cells.
Blood. 121:3682–3691. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Baumann S, Fas SC, Giaisi M, et al:
Wogonin preferentially kills malignant lymphocytes and suppresses
T-cell tumor growth by inducing PLCgamma1- and
Ca2+-dependent apoptosis. Blood. 111:2354–2363. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Susin SA, Daugas E, Ravagnan L, et al: Two
distinct pathways leading to nuclear apoptosis. J Exp Med.
192:571–580. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wirawan E, Vanden Berghe T, Lippens S,
Agostinis P and Vandenabeele P: Autophagy: for better or for worse.
Cell Res. 22:43–61. 2012. View Article : Google Scholar
|
13
|
Codogno P and Meijer AJ: Autophagy and
signaling: their role in cell survival and cell death. Cell Death
Differ. 12:1509–1518. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu J, Zhang Y, Qu J, et al:
β-Elemene-induced autophagy protects human gastric cancer cells
from undergoing apoptosis. BMC Cancer. 11:1832011.
|
15
|
Trejo-Solis C, Jimenez-Farfan D,
Rodriguez-Enriquez S, et al: Copper compound induces autophagy and
apoptosis of glioma cells by reactive oxygen species and JNK
activation. BMC Cancer. 12:1562012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Le XF, Mao W, Lu Z, Carter BZ and Bast RC
Jr: Dasatinib induces autophagic cell death in human ovarian
cancer. Cancer. 116:4980–4990. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen KL, Chang WS, Cheung CH, et al:
Targeting cathepsin S induces tumor cell autophagy via the EGFR-ERK
signaling pathway. Cancer Lett. 317:89–98. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao Y, Luo P, Guo Q, et al: Interactions
between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by
traumatic brain injury in vitro and in vivo. Exp Neurol.
237:489–498. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mukhopadhyay S, Panda PK, Behera B, et al:
In vitro and in vivo antitumor effects of Peanut agglutinin through
induction of apoptotic and autophagic cell death. Food Chem
Toxicol. 64:369–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu WJ, Luo MN, Tan J, et al: Autophagy
activation reduces renal tubular injury induced by urinary
proteins. Autophagy. 10:243–256. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yan Y, Hao Y, Hu S, Chen X and Bai X:
Hollow fibre cell fishing with high performance liquid
chromatography for screening bioactive anthraquinones from
traditional Chinese medicines. J Chromatogr A. 1322:8–17. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Shen A, Lin J, Chen Y, et al: Pien Tze
Huang inhibits tumor angiogenesis in a mouse model of colorectal
cancer via suppression of multiple cellular pathways. Oncol Rep.
30:1701–1706. 2013.PubMed/NCBI
|
23
|
Li C, Hashimi SM, Cao S, et al: The
mechanisms of Chansu in inducing efficient apoptosis in colon
cancer cells. Evid Based Complement Alternat Med.
2013:8490542013.PubMed/NCBI
|
24
|
Maiuri MC, Zalckvar E, Kimchi A and
Kroemer G: Self-eating and self-killing: crosstalk between
autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu WT, Lin CH, Hsiao M and Gean PW:
Minocycline inhibits the growth of glioma by inducing autophagy.
Autophagy. 7:166–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shin SY, Lee KS, Choi YK, et al: The
antipsychotic agent chlorpromazine induces autophagic cell death by
inhibiting the Akt/mTOR pathway in human U-87MG glioma cells.
Carcinogenesis. 34:2080–2089. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liao A, Hu R, Zhao Q, et al: Autophagy
induced by FTY720 promotes apoptosis in U266 cells. Eur J Pharm
Sci. 45:600–605. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sui X, Kong N, Ye L, et al: p38 and JNK
MAPK pathways control the balance of apoptosis and autophagy in
response to chemotherapeutic agents. Cancer Lett. 344:174–179.
2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pearson G, Robinson F, Beers Gibson T, et
al: Mitogen-activated protein (MAP) kinase pathways: regulation and
physiological functions. Endocr Rev. 22:153–183. 2001.PubMed/NCBI
|
30
|
Borders EB, Bivona C and Medina PJ:
Mammalian target of rapamycin: biological function and target for
novel anticancer agents. Am J Health Syst Pharm. 67:2095–2106.
2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yap TA, Garrett MD, Walton MI, Raynaud F,
de Bono JS and Workman P: Targeting the PI3K-AKT-mTOR pathway:
progress, pitfalls, and promises. Curr Opin Pharmacol. 8:393–412.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Duan WJ, Li QS, Xia MY, Tashiro S, Onodera
S and Ikejima T: Silibinin activated p53 and induced autophagic
death in human fibrosarcoma HT1080 cells via reactive oxygen
species-p38 and c-Jun N-terminal kinase pathways. Biol Pharm Bull.
34:47–53. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu B, Cheng Y, Zhang B, Bian HJ and Bao
JK: Polygonatum cyrtonema lectin induces apoptosis and
autophagy in human melanoma A375 cells through a
mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett. 275:54–60.
2009. View Article : Google Scholar
|