1
|
ENCODE Project Consortium. Birney E,
Stamatoyannopoulos JA, et al: Identification and analysis of
functional elements in 1% of the human genome by the ENCODE pilot
project. Nature. 447:799–816. 2007.
|
2
|
Khachane AN and Harrison PM: Mining
mammalian transcript data for functional long non-coding RNAs. PLoS
One. 5:e103162010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tsang WP, Wong TW, Cheung AH, Co CN and
Kwok TT: Induction of drug resistance and transformation in human
cancer cells by the noncoding RNA CUDR. RNA. 13:890–898.
2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wilusz JE, Sunwoo H and Spector DL: Long
noncoding RNAs: functional surprises from the RNA world. Genes Dev.
23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang KC and Chang HY: Molecular mechanisms
of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar
|
6
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: insights into functions. Nat Rev Genet.
10:155–159. 2009. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Costa FF: Non-coding RNAs, epigenetics and
complexity. Gene. 410:9–17. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Faghihi MA and Wahlestedt C: Regulatory
roles of natural antisense transcripts. Nat Rev Mol Cell Biol.
10:637–643. 2009. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gibb EA, Brown CJ and Lam WL: The
functional role of long non-coding RNA in human carcinomas. Mol
Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wapinski O and Chang HY: Long noncoding
RNAs and human disease. Trends Cell Biol. 21:354–361. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang XS, Zhang Z, Wang HC, et al: Rapid
identification of UCA1 as a very sensitive and specific unique
marker for human bladder carcinoma. Clin Cancer Res. 12:4851–4858.
2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xie XJ, Li X, Wang F and Chen W: Cellular
localization and tissue expression pattern of UCA1, a non-coding
RNA. Nan Fang Yi Ke Da Xue Xue Bao. 30:57–60. 2010.(In
Chinese).
|
14
|
Wang F, Li X, Xie X, Zhao L and Chen W:
UCA1, a non-protein-coding RNA up-regulated in bladder
carcinoma and embryo, influencing cell growth and promoting
invasion. FEBS Lett. 582:1919–1927. 2008. View Article : Google Scholar
|
15
|
Peifer M and Polakis P: Wnt signaling in
oncogenesis and embryogenesis - a look outside the nucleus.
Science. 287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shimada T and Fujii-Kuriyama Y: Metabolic
activation of polycyclic aromatic hydrocarbons to carcinogens by
cytochromes P450 1A1 and 1B1. Cancer Sci. 95:1–6. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Katayama H, Brinkley WR and Sen S: The
Aurora kinases: role in cell transformation and tumorigenesis.
Cancer Metastasis Rev. 22:451–464. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wilson BG and Roberts CW: SWI/SNF
nucleosome remodellers and cancer. Nat Rev Cancer. 11:481–492.
2011. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Kidder BL, Palmer S and Knott JG:
SWI/SNF-Brg1 regulates self-renewal and occupies core
pluripotency-related genes in embryonic stem cells. Stem Cells.
27:317–328. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tu Z, Zhuang X, Yao YG and Zhang R: BRG1
is required for formation of senescence-associated heterochromatin
foci induced by oncogenic RAS or BRCA1 loss. Mol Cell Biol.
33:1819–1829. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kang H, Cui K and Zhao K: BRG1 controls
the activity of the retinoblastoma protein via regulation of
p21CIP1/WAF1/SDI. Mol Cell Biol. 24:1188–1199. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu Y, Zhang J and Chen X: The activity of
p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF
chromatin remodeling complexes. J Biol Chem. 282:37429–37435. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Tsai MC, Manor O, Wan Y, et al: Long
noncoding RNA as modular scaffold of histone modification
complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bochar DA, Savard J, Wang W, et al: A
family of chromatin remodeling factors related to Williams syndrome
transcription factor. Proc Natl Acad Sci USA. 97:1038–1043. 2000.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang C, Li X, Wang Y, Zhao L and Chen W:
Long non-coding RNA UCA1 regulated cell cycle distribution via CREB
through PI3-K dependent pathway in bladder carcinoma cells. Gene.
496:8–16. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Barker N, Hurlstone A, Musisi H, Miles A,
Bienz M and Clevers H: The chromatin remodelling factor Brg-1
interacts with β-catenin to promote target gene activation. EMBO J.
20:4935–4943. 2001.
|
27
|
DiRenzo J, Shang YF, Phelan M, et al:
BRG-1 is recruited to estrogen-responsive promoters and cooperates
with factors involved in histone acetylation. Mol Cell Biol.
20:7541–7549. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Alessio N, Squillaro T, Cipollaro M,
Bagella L, Giordano A and Galderisi U: The BRG1 ATPase of chromatin
remodeling complexes is involved in modulation of mesenchymal stem
cell senescence through RB-P53 pathways. Oncogene. 29:5452–5463.
2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Aravinthan A, Mells G, Allison M, et al:
Gene polymorphisms of cellular senescence marker p21 and disease
progression in non-alcohol-related fatty liver disease. Cell Cycle.
13:1489–1494. 2014. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Bai J, Chen J, Ma M, et al: Inhibiting
enhancer of zeste homolog 2 promotes cellular senescence in gastric
cancer cells SGC-7901 by activation of p21 and p16. DNA Cell Biol.
33:337–344. 2014. View Article : Google Scholar : PubMed/NCBI
|