1
|
Gopinathan A and Tuveson DA: The use of
GEM models for experimental cancer therapeutics. Dis Model Mech.
1:83–86. 2012. View Article : Google Scholar
|
2
|
Richmond A and Su Y: Mouse xenograft
models vs GEM models for human cancer therapeutics. Dis Model Mech.
1:78–82. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kelland LR: Of mice and men: values and
liabilities of the athymic nude mouse model in anticancer drug
development. Eur J Cancer. 40:827–836. 2004.PubMed/NCBI
|
4
|
McCune JM, Namikawa R, Kaneshima H, Shultz
LD, Lieberman M and Weissman IL: The SCID-hu mouse: murine model
for the analysis of human hematolymphoid differentiation and
function. Science. 241:1632–1639. 1988. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mosier DE, Gulizia RJ, Baird SM and Wilson
DB: Transfer of a functional human immune system to mice with
severe combined immunodeficiency. Nature. 335:256–259. 1988.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lubin I, Faktorowich Y, Lapidot T, Gan Y,
Eshhar Z, Gazit E, et al: Engraftment and development of human T
and B cells in mice after bone marrow transplantation. Science.
252:427–431. 1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lapidot T, Pflumio F, Doedens M, Murdoch
B, Williams DE and Dick JE: Cytokine stimulation of multilineage
hematopoiesis from immature human cells engrafted in SCID mice.
Science. 255:1137–1141. 1992. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cheung AM, Wan TS, Leung JC, Chan LY,
Huang H, Kwong YL, et al: Aldehyde dehydrogenase activity in
leukemic blasts defines a subgroup of acute myeloid leukemia with
adverse prognosis and superior NOD/SCID engrafting potential.
Leukemia. 21:1423–1430. 2007. View Article : Google Scholar
|
9
|
Ishikawa F, Yasukawa M, Lyons B, Yoshida
S, Miyamoto T, Yoshimoto G, et al: Development of functional human
blood and immune systems in NOD/SCID/IL2 receptor {gamma}
chain(null) mice. Blood. 106:1565–1573. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ishikawa F, Yoshida S, Saito Y, Hijikata
A, Kitamura H, Tanaka S, et al: Chemotherapy-resistant human AML
stem cells home to and engraft within the bone-marrow endosteal
region. Nat Biotechnol. 25:1315–1321. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Will B, Kawahara M, Luciano JP, Bruns I,
Parekh S, Erickson-Miller CL, et al: Effect of the nonpeptide
thrombo-poietin receptor agonist Eltrombopag on bone marrow cells
from patients with acute myeloid leukemia and myelodysplastic
syndrome. Blood. 114:3899–3908. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sanchez PV, Perry RL, Sarry JE, Perl AE,
Murphy K, Swider CR, et al: A robust xenotransplantation model for
acute myeloid leukemia. Leukemia. 23:2109–2117. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Goardon N, Marchi E, Atzberger A, Quek L,
Schuh A, Soneji S, et al: Coexistence of LMPP-like and GMP-like
leukemia stem cells in acute myeloid leukemia. Cancer Cell.
19:138–152. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lapidot T, Sirard C, Vormoor J, Murdoch B,
Hoang T, Caceres-Cortes J, et al: A cell initiating human acute
myeloid leukaemia after transplantation into SCID mice. Nature.
367:645–648. 1994. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Sarry JE, Murphy K, Perry R, Sanchez PV,
Secreto A, Keefer C, et al: Human acute myelogenous leukemia stem
cells are rare and heterogeneous when assayed in
NOD/SCID/IL2Rγc-deficient mice. J Clin Invest. 121:384–395.
2011.PubMed/NCBI
|
16
|
Gerber JM, Smith BD, Ngwang B, Zhang H,
Vala MS, Morsberger L, et al: A clinically relevant population of
leukemic CD34(+)CD38(−) cells in acute myeloid leukemia. Blood.
119:3571–3577. 2012.PubMed/NCBI
|
17
|
Hong SH, Nah HY, Lee JY, Lee YJ, Lee JW,
Gye MC, et al: Estrogen regulates the expression of the small
proline-rich 2 gene family in the mouse uterus. Mol Cells.
17:477–484. 2004.PubMed/NCBI
|
18
|
Lee JY, Park C, Cho YP, Lee E, Kim H, Kim
P, et al: Podoplanin-expressing cells derived from bone marrow play
a crucial role in postnatal lymphatic neovascularization.
Circulation. 122:1413–1425. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shultz LD, Ishikawa F and Greiner DL:
Humanized mice in translational biomedical research. Nat Rev
Immunol. 7:118–130. 2007. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Choi B, Chun E, Kim M, Kim SY, Kim ST,
Yoon K, et al: Human T cell development in the liver of humanized
NOD/SCID/ IL-2Rγ(null)(NSG) mice generated by intrahepatic
injection of CD34(+) human (h) cord blood (CB) cells. Clin Immunol.
139:321–335. 2011.PubMed/NCBI
|
21
|
Notta F, Doulatov S and Dick JE:
Engraftment of human hematopoietic stem cells is more efficient in
female NOD/SCID/ IL-2Rgc-null recipients. Blood.
115:3704–3707. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lacombe F, Durrieu F, Briais A, Dumain P,
Belloc F, Bascans E, et al: Flow cytometry CD45 gating for
immunophenotyping of acute myeloid leukemia. Leukemia.
11:1878–1886. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Whartenby KA, Straley EE, Kim H, Racke F,
Tanavde V, Gorski KS, et al: Transduction of donor hematopoietic
stem-progenitor cells with Fas ligand enhanced short-term
engraftment in a murine model of allogeneic bone marrow
transplantation. Blood. 100:3147–3154. 2002. View Article : Google Scholar
|
24
|
Breems DA, van Hennik PB, Kusadasi N,
Boudewijn A, Cornelissen JJ, Sonneveld P and Ploemacher RE:
Individual stem cell quality in leukapheresis products is related
to the number of mobilized stem cells. Blood. 87:5370–5378.
1996.PubMed/NCBI
|
25
|
Zhang J, Yang WH, Yang XD, Shi ZX, Wang
XL, Yu WJ, et al: Establishment and identification of CML model via
injection of K562 cells into the murine caudal vein. Zhongguo Shi
Yan Xue Ye Xue Za Zhi. 20:773–776. 2012.(In Chinese).
|
26
|
Park J, Kim KI, Koh Y, Won NH, Oh JM, Lee
DS, et al: Establishment of a new Glivec-resistant chronic myeloid
leukemia cell line, SNUCML-02, using an in vivo model. Exp Hematol.
38:773–781. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee J, Li M, Milwid J, Dunham J, Vinegoni
C, Gorbatov R, et al: Implantable microenvironments to attract
hematopoietic stem/cancer cells. Proc Natl Acad Sci USA.
109:19638–19643. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Elias AD, Ayash L, Anderson KC, Hunt M,
Wheeler C, Schwartz G, et al: Mobilization of peripheral blood
progenitor cells by chemotherapy and granulocyte-macrophage
colony-stimulating factor for hematologic support after high-dose
intensification for breast cancer. Blood. 79:3036–3044. 1992.
|