1
|
Ono R, Kobayashi S, Wagatsuma H, et al: A
retrotransposon-derived gene, PEG10, is a novel imprinted
gene located on human chromosome 7q21. Genomics. 73:232–237.
2001.
|
2
|
Li CM, Margolin AA, Salas M, et al:
PEG10 is a c-MYC target gene in cancer cells. Cancer Res.
66:665–672. 2006. View Article : Google Scholar
|
3
|
Tsou AP, Chuang YC, Su JY, et al:
Overexpression of a novel imprinted gene, PEG10, in human
hepatocellular carcinoma and in regenerating mouse livers. J Biomed
Sci. 10:625–635. 2003.PubMed/NCBI
|
4
|
Tsuji K, Yasui K, Gen Y, et al:
PEG10 is a probable target for the amplification at 7q21
detected in hepatocellular carcinoma. Cancer Genet Cytogenet.
198:118–125. 2010. View Article : Google Scholar
|
5
|
Lux H, Flammann H, Hafner M and Lux A:
Genetic and molecular analyses of PEG10 reveal new aspects
of genomic organization, transcription and translation. PLoS One.
5:e86862010.PubMed/NCBI
|
6
|
Okabe H, Satoh S, Furukawa Y, et al:
Involvement of PEG10 in human hepatocellular carcinogenesis through
interaction with SIAH1. Cancer Res. 63:3043–3048. 2003.PubMed/NCBI
|
7
|
Kainz B, Shehata M, Bilban M, et al:
Overexpression of the paternally expressed gene 10 (PEG10)
from the imprinted locus on chromosome 7q21 in high-risk B-cell
chronic lymphocytic leukemia. Int J Cancer. 121:1984–1993.
2007.PubMed/NCBI
|
8
|
Liu DC, Yang ZL and Jiang S:
Identification of PEG10 and TSG101 as carcinogenesis, progression,
and poor-prognosis related biomarkers for gallbladder
adenocarcinoma. Pathol Oncol Res. 17:859–866. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ono R, Nakamura K, Inoue K, et al:
Deletion of Peg10, an imprinted gene acquired from a
retrotransposon, causes early embryonic lethality. Nat Genet.
38:101–106. 2006.
|
10
|
Smallwood A, Papageorghiou A, Nicolaides
K, et al: Temporal regulation of the expression of syncytin
(HERV-W), maternally imprinted PEG10, and SGCE
in human placenta. Biol Reprod. 69:286–293. 2003.PubMed/NCBI
|
11
|
Hu C, Xiong J, Zhang L, et al: PEG10
activation by co-stimulation of CXCR5 and CCR7 essentially
contributes to resistance to apoptosis in
CD19+CD34+ B cells from patients with B cell
lineage acute and chronic lymphocytic leukemia. Cell Mol Immunol.
1:280–294. 2004.PubMed/NCBI
|
12
|
Chunsong H, Yuling H, Li W, et al: CXC
chemokine ligand 13 and CC chemokine ligand 19 cooperatively render
resistance to apoptosis in B cell lineage acute and chronic
lymphocytic leukemia CD23+CD5+ B cells. J
Immunol. 177:6713–6722. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xiong J, Qin J, Zheng Y, et al: PEG10
promotes the migration of human Burkitt’s lymphoma cells by
up-regulating the expression of matrix metalloproteinase-2 and -9.
Clin Invest Med. 35:E117–E125. 2012.PubMed/NCBI
|
14
|
UyBico SJ, Wu CC, Suh RD, et al: Lung
cancer staging essentials: the new TNM staging system and potential
imaging pitfalls. Radiographics. 30:1163–1181. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Murchison JT: TNM staging update for lung
cancer: why is this important? World J Radiol. 4:126–127. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Han R, Xiong J, Xiao R, et al: Activation
of β-catenin signaling is critical for doxorubicin-induced
epithelial-mesenchymal transition in BGC-823 gastric cancer cell
line. Tumor Biol. 34:277–284. 2013.
|
17
|
Huang Q, Gumireddy K, Schrier M, et al:
The microRNAs miR-373 and miR-520c promote tumour invasion and
metastasis. Nat Cell Biol. 10:202–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Teng Y, Wang X, Wang Y and Ma D:
Wnt/β-catenin signaling regulates cancer stem cells in lung cancer
A549 cells. Biochem Biophys Res Commun. 392:373–379. 2010.
|
19
|
Yang L, Chen Y, Cui T, et al: Desmoplakin
acts as a tumor suppressor by inhibition of the Wnt/β-catenin
signaling pathway in human lung cancer. Carcinogenesis.
33:1863–1870. 2012.PubMed/NCBI
|
20
|
Su K, Huang L, Li W, et al: TC-1 (c8orf4)
enhances aggressive biologic behavior in lung cancer through the
Wnt/β-catenin pathway. J Surg Res. 185:255–263. 2013.PubMed/NCBI
|
21
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Acloque H, Adams MS, Fishwick K, et al:
Epithelial-mesenchymal transitions: the importance of changing cell
state in development and disease. J Clin Invest. 119:1438–1449.
2009. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Nieto MA: Epithelial-mesenchymal
transitions in development and disease: old views and new
perspectives. Int J Dev Biol. 53:1541–1547. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shintani Y, Okimura A, Sato K, et al:
Epithelial to mesenchymal transition is a determinant of
sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann
Thorac Surg. 92:1794–1804. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lee KR, Lee JS, Kim YR, et al:
Polysaccharide from Inonotus obliquus inhibits migration and
invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via
downregulation of NF-κB signaling pathway. Oncol Rep. 31:2447–2453.
2014.
|
26
|
Liu N, Li Y, Su S, et al: Inhibition of
cell migration by ouabain in the A549 human lung cancer cell line.
Oncol Lett. 6:475–479. 2013.PubMed/NCBI
|
27
|
Jemal A, Bray F, Center MM, et al: Global
cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar
|
28
|
Malvezzi M, Bertuccio P, Levi F, et al:
European cancer mortality predictions for the year 2013. Ann Oncol.
24:792–800. 2013.PubMed/NCBI
|
29
|
Goldstraw P, Crowley J, Chansky K, et al:
The IASLC Lung Cancer Staging Project: proposals for the revision
of the TNM stage groupings in the forthcoming (seventh) edition of
the TNM Classification of Malignant Tumours. J Thorac Oncol.
2:706–714. 2007. View Article : Google Scholar
|
30
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar
|
31
|
Heuberger J and Birchmeier W: Interplay of
cadherin-mediated cell adhesion and canonical Wnt signaling. Cold
Spring Harb Perspect Biol. 2:a0029152010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Johnson M, Sharma M, Jamieson C, et al:
Regulation of β-catenin trafficking to the membrane in living
cells. Cell Signal. 21:339–348. 2009.
|
33
|
Valenta T, Hausmann G and Basler K: The
many faces and functions of β-catenin. EMBO J. 31:2714–2736.
2012.
|
34
|
Baum B, Settleman J and Quinlan MP:
Transitions between epithelial and mesenchymal states in
development and disease. Semin Cell Dev Biol. 19:294–308. 2008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Thiery JP: Epithelial-mesenchymal
transitions in development and pathologies. Curr Opin Cell Biol.
15:740–746. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang MH, Chen CL, Chau GY, et al:
Comprehensive analysis of the independent effect of twist and snail
in promoting metastasis of hepatocellular carcinoma. Hepatology.
50:1464–1474. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
McDonnell S, Morgan M and Lynch C: Role of
matrix metalloproteinases in normal and disease processes. Biochem
Soc Trans. 27:734–740. 1999.PubMed/NCBI
|
38
|
Shuman Moss LA, Jensen-Taubman S and
Stetler-Stevenson WG: Matrix metalloproteinases: changing roles in
tumor progression and metastasis. Am J Pathol. 181:1895–1899.
2012.PubMed/NCBI
|