1
|
Postow MA, Callahan MK, Barker CA, et al:
Immunologic correlates of the abscopal effect in a patient with
melanoma. N Engl J Med. 366:925–931. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Perego D and Faravelli A: Unexpected
consequence of splenectomy in composite lymphoma. The abscopal
effect. Haematologica. 85:2112000.PubMed/NCBI
|
3
|
Okuma K, Yamashita H, Niibe Y, Hayakawa K
and Nakagawa K: Abscopal effect of radiation on lung metastases of
hepatocellular carcinoma: a case report. J Med Case Rep. 5:1112011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Macklis RM, Mauch PM, Burakoff SJ and
Smith BR: Lymphoid irradiation results in long-term increases in
natural killer cells in patients treated for Hodgkin’s disease.
Cancer. 69:778–783. 1992.PubMed/NCBI
|
5
|
Lugade AA, Moran JP, Gerber SA, Rose RC,
Frelinger JG and Lord EM: Local radiation therapy of B16 melanoma
tumors increases the generation of tumor antigen-specific effector
cells that traffic to the tumor. J Immunol. 174:7516–7523. 2005.
View Article : Google Scholar
|
6
|
Lee Y, Auh SL, Wang Y, et al: Therapeutic
effects of ablative radiation on local tumor require
CD8+ T cells: changing strategies for cancer treatment.
Blood. 114:589–595. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Demaria S, Ng B, Devitt ML, et al:
Ionizing radiation inhibition of distant untreated tumors (abscopal
effect) is immune mediated. Int J Radiat Oncol Biol Phys.
58:862–870. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Andocs G, Renner H, Balogh L, Fonyad L,
Jakab C and Szasz A: Strong synergy of heat and modulated
electromagnetic field in tumor cell killing. Strahlenther Onkol.
185:120–126. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Andocs G, Szasz O and Szasz A: Oncothermia
treatment of cancer: from the laboratory to clinic. Electromagn
Biol Med. 28:148–165. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Khurana D, Martin EA, Kasperbauer JL, et
al: Characterization of a spontaneously arising murine squamous
cell carcinoma (SCC VII) as a prerequisite for head and neck cancer
immunotherapy. Head Neck. 23:899–906. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lutz MB, Kukutsch N, Ogilvie AL, et al: An
advanced culture method for generating large quantities of highly
pure dendritic cells from mouse bone marrow. J Immunol Methods.
223:77–92. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Workman P, Aboagye EO, Balkwill F, et al:
Guidelines for the Welfare and Use of Animals in Cancer Research.
Br J Cancer. 102:1555–1577. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xavier LL, Viola GG, Ferraz AC, et al: A
simple and fast densitometric method for the analysis of tyrosine
hydroxylase immunoreactivity in the substantia nigra pars compacta
and in the ventral tegmental area. Brain Res Brain Res Protoc.
16:58–64. 2005. View Article : Google Scholar
|
14
|
Bollschweiler E, Baldus SE, Schroder W, et
al: High rate of lymph-node metastasis in submucosal esophageal
squamous-cell carcinomas and adenocarcinomas. Endoscopy.
38:149–156. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mayinger B, Horner P, Jordan M, et al:
Light-induced autofluorescence spectroscopy for the endoscopic
detection of esophageal cancer. Gastrointest Endosc. 54:195–201.
2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bogovic J, Douwes F, Muravjov G and
Istomin J: Posttreatment histology and microcirculation status of
osteogenic sarcoma after a neoadjuvant chemo- and radiotherapy in
combination with local electromagnetic hyperthermia. Onkologie.
24:55–58. 2001. View Article : Google Scholar
|
17
|
Feyerabend T, Wiedemann GJ, Jager B,
Vesely H, Mahlmann B and Richter E: Local hyperthermia, radiation,
and chemotherapy in recurrent breast cancer is feasible and
effective except for inflammatory disease. Int J Radiat Oncol Biol
Phys. 49:1317–1325. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fiorentini G, Giovanis P, Rossi S, et al:
A phase II clinical study on relapsed malignant gliomas treated
with electro-hyperthermia. In Vivo. 20:721–724. 2006.PubMed/NCBI
|
19
|
Hegyi G, Szigeti GP and Szasz A:
Hyperthermia versus oncothermia: cellular effects in complementary
cancer therapy. Evid Based Complement Alternat Med.
2013:6728732013.PubMed/NCBI
|
20
|
Mole RH: Whole body irradiation;
radiobiology or medicine? Br J Radiol. 26:234–241. 1953. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nobler M: The abscopal effect in malignant
lymphoma and its relationship to lymphocyte circulation. Radiology.
93:410–412. 1969. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Rees GJ: Abscopal regression in lymphoma:
a mechanism in common with total body irradiation? Clin Radiol.
32:475–480. 1981. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rees GJ and Ross CM: Abscopal regression
following radiotherapy for adenocarcinoma. Br J Radiol. 56:63–66.
1983. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sham RL: The abscopal effect and chronic
lymphocytic leukemia. Am J Med. 98:307–308. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ohba K, Omagari K, Nakamura T, et al:
Abscopal regression of hepatocellular carcinoma after radiotherapy
for bone metastasis. Gut. 43:575–577. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schmidt T, Ziske C, Marten A, et al:
Intratumoral immunization with tumor RNA-pulsed dendritic cells
confers antitumor immunity in a C57BL/6 pancreatic murine tumor
model. Cancer Res. 63:8962–8967. 2003.PubMed/NCBI
|
27
|
Candido KA, Shimizu K, McLaughlin JC, et
al: Local administration of dendritic cells inhibits established
breast tumor growth: implications for apoptosis-inducing agents.
Cancer Res. 61:228–236. 2001.PubMed/NCBI
|
28
|
Triozzi PL, Khurram R, Aldrich WA, Walker
MJ, Kim JA and Jaynes S: Intratumoral injection of dendritic cells
derived in vitro in patients with metastatic cancer. Cancer.
89:2646–2654. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Binder RJ and Srivastava PK: Essential
role of CD91 in re-presentation of gp96-chaperoned peptides. Proc
Natl Acad Sci USA. 101:6128–6133. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Facciponte JG, Wang XY, MacDonald IJ, et
al: Heat shock proteins HSP70 and GP96: Structural insights. Cancer
Immunol Immunother. 55:339–346. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Demine R and Walden P: Testing the role of
gp96 as peptide chaperone in antigen processing. J Biol Chem.
280:17573–17578. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ramirez SR, Singh-Jasuja H, Warger T, et
al: Glycoprotein 96-activated dendritic cells induce a CD8-biased T
cell response. Cell Stress Chaperones. 10:221–229. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Segal BH, Wang XY, Dennis CG, et al: Heat
shock proteins as vaccine adjuvants in infections and cancer. Drug
Discov Today. 11:534–540. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Akutsu Y, Matsubara H, Urashima T, et al:
Combination of direct intratumoral administration of dendritic
cells and irradiation induces strong systemic antitumor effect
mediated by GRP94/gp96 against squamous cell carcinoma in mice. Int
J Oncol. 31:509–515. 2007.
|
35
|
Wang XH, Qin Y, Hu MH and Xie Y: Dendritic
cells pulsed with gp96-peptide complexes derived from human
hepatocellular carcinoma (HCC) induce specific cytotoxic T
lymphocytes. Cancer Immunol Immunother. 54:971–980. 2005.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu S, Wang H, Yang Z, et al: Enhancement
of cancer radiation therapy by use of adenovirus-mediated
secretable glucose-regulated protein 94/gp96 expression. Cancer
Res. 65:9126–9131. 2005. View Article : Google Scholar : PubMed/NCBI
|