Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue
- Authors:
- Miguel Torres-Martin
- Luis Lassaletta
- Alberto Isla
- Jose M. De Campos
- Giovanny R. Pinto
- Rommel R. Burbano
- Javier S. Castresana
- Barbara Melendez
- Juan A. Rey
-
Affiliations: Molecular Neuro-Oncogenetics Laboratory, Research Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain, Department of Otolaryngology, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain, Department of Neurosurgery, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain, Department of Neurosurgery, Fundacion Jimenez Diaz, Madrid, Spain, Genetics and Molecular Biology Laboratory, Federal University of Piau, Parnaiba, Brazil, Human Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil, Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain, Molecular Pathology Research Unit, Virgen de la Salud Hospital, Toledo, Spain - Published online on: October 3, 2014 https://doi.org/10.3892/or.2014.3526
- Pages: 2327-2334
-
Copyright: © Torres-Martin et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Louis DN, Ohgaki H, Wiestler OD and Cavenee WK: WHO Classification of Tumors of the Central Nervous System. IARC Press; Lyon: 2007 | |
Zankl H and Zang KD: Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik. 14:167–169. 1972.PubMed/NCBI | |
Rey JA, Bello MJ, De Campos JM, Kusak ME and Moreno S: Cytogenetic analysis in human neurinomas. Cancer Genet Cytogenet. 28:187–188. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hadfield KD, Smith MJ, Urquhart JE, Wallace AJ, Bowers NL, King AT, Rutherford SA, Trump D, Newman WG and Evans DG: Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwanno-matosis schwannomas. Oncogene. 29:6216–6221. 2010. View Article : Google Scholar | |
Hansson CM, Buckley PG, Grigelioniene G, Piotrowski A, Hellström AR, Mantripragada K, Jarbo C, Mathiesen T and Dumanski JP: Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genomics. 8:162007. View Article : Google Scholar : PubMed/NCBI | |
Leone PE, Bello MJ, de Campos JM, Vaquero J, Sarasa JL, Pestaña A and Rey JA: NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic meningiomas. Oncogene. 18:2231–2239. 1999. View Article : Google Scholar | |
Leone PE, Bello MJ, Mendiola M, Kusak ME, De Campos JM, Vaquero J, Sarasa JL, Pestana A and Rey JA: Allelic status of 1p, 14q and 22q and NF2 gene mutations in sporadic schwannomas. Int J Mol Med. 1:889–892. 1998.PubMed/NCBI | |
Bello MJ, de Campos JM, Kusak ME, Vaquero J, Sarasa JL, Pestaña A and Rey JA: Allelic loss at 1p is associated with tumor progression of meningiomas. Genes Chromosomes Cancer. 9:296–298. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bello MJ, Martinez-Glez V, Franco-Hernandez C, Pefla-Granero C, de Campos JM, Isla A, Lassaletta L, Vaquero J and Rey JA: DNA methylation pattern in 16 tumor-related genes in schwannomas. Cancer Genet Cytogenet. 172:84–86. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bello MJ, Amiñoso C, Lopez-Marin I, Arjona D, Gonzalez-Gomez P, Alonso ME, Lomas J, de Campos JM, Kusak ME, Vaquero J, Isla A, Gutierrez M, Sarasa JL and Rey JA: DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and 22q. Acta Neuropathol. 108:413–421. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Pang JC, Dong S, Mao B, Poon WS and Ng HK: Aberrant CpG island hypermethylation profile is associated with atypical and anaplastic meningiomas. Hum Pathol. 36:416–425. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kino T, Takeshima H, Nakao M, Nishi T, Yamamoto K, Kimura T, Saito Y, Kochi M, Kuratsu J, Saya H and Ushio Y: Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma. Genes Cell. 6:441–454. 2001. | |
Gonzalez-Gomez P, Bello MJ, Alonso ME, Lomas J, Arjona D, de Campos JM, Vaquero J, Isla A, Lassaletta L, Gutierrez M, Sarasa JL and Rey JA: CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas. Clin Cancer Res. 9:5601–5606. 2003.PubMed/NCBI | |
Lomas J, Bello MJ, Arjona D, Alonso ME, Martinez-Glez V, Lopez-Marin I, Amiñoso C, de Campos JM, Isla A, Vaquero J and Rey JA: Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer. 42:314–319. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kullar PJ, Pearson DM, Malley DS, Collins VP and Ichimura K: CpG island hypermethylation of the neurofibromatosis type 2 (NF2) gene is rare in sporadic vestibular schwannomas. Neuropathol Appl Neurobiol. 36:505–514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koutsimpelas D, Ruerup G, Mann WJ and Brieger J: Lack of neurofibromatosis type 2 gene promoter methylation in sporadic vestibular schwannomas. ORL J Otorhinolaryngol Relat Spec. 74:33–37. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kishida Y, Natsume A, Kondo Y, Takeuchi I, An B, Okamoto Y, Shinjo K, Saito K, Ando H, Ohka F, Sekido Y and Wakabayashi T: Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis. 33:436–441. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Shi L, Russin J, Zeng L, Chang X, He S, Chen TC, Giannotta SL, Weisenberger DJ, Zada G, Mack WJ and Wang K: DNA methylation in the malignant transformation of meningiomas. PloS One. 8:e541142013. View Article : Google Scholar : PubMed/NCBI | |
Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM, Carrión-Grant G, Yilmaz B, Grady C, Tanrikulu B, Bakircioğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K, Choi M, Overton JD, et al: Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 339:1077–1080. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE, Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF and Beroukhim R: Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 45:285–289. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stemmer-Rachamimov AO, Xu L, Gonzalez-Agosti C, Burwick JA, Pinney D, Beauchamp R, Jacoby LB, Gusella JF, Ramesh V and Louis DN: Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol. 151:1649–1654. 1997.PubMed/NCBI | |
Martinez-Glez V, Franco-Hernandez C, Alvarez L, De Campos JM, Isla A, Vaquero J, Lassaletta L, Casartelli C and Rey JA: Meningiomas and schwannomas: molecular subgroup classification found by expression arrays. Int J Oncol. 34:493–504. 2009.PubMed/NCBI | |
Torres-Martín M, Martinez-Glez V, Peña-Granero C, Isla A, Lassaletta L, De Campos JM, Pinto GR, Burbano RR, Meléndez B, Castresana JS and Rey JA: Gene expression analysis of aberrant signaling pathways in meningiomas. Oncol Lett. 6:275–279. 2013.PubMed/NCBI | |
Torres-Martín M, Martinez-Glez V, Peña-Granero C, Lassaletta L, Isla A, de Campos JM, Pinto GR, Burbano RR, Meléndez B, Castresana JS and Rey JA: Expression analysis of tumor-related genes involved in critical regulatory pathways in schwannomas. Clin Transl Oncol. 15:409–411. 2013.PubMed/NCBI | |
Martínez-Glez V, Alvarez L, Franco-Hernández C, Torres-Martin M, de Campos JM, Isla A, Vaquero J, Lassaletta L, Castresana JS, Casartelli C and Rey JA: Genomic deletions at 1p and 14q are associated with an abnormal cDNA microarray gene expression pattern in meningiomas but not in schwannomas. Cancer Genet Cytogenet. 196:1–6. 2010.PubMed/NCBI | |
Aarhus M, Bruland O, Sætran HA, Mork SJ, Lund-Johansen M and Knappskog PM: Global gene expression profiling and tissue microarray reveal novel candidate genes and downregulation of the tumor suppressor gene CAV1 in sporadic vestibular schwannomas. Neurosurgery. 67:998–1019. 2010. View Article : Google Scholar | |
Cayé-Thomasen P, Borup R, Stangerup S-E, Thomsen J and Nielsen FC: Deregulated genes in sporadic vestibular schwannomas. Otol Neurotol. 31:256–266. 2010. | |
Torres-Martin M, Lassaletta L, San-Roman-Montero J, De Campos JM, Isla A, Gavilan J, Melendez B, Pinto GR, Burbano RR, Castresana JS and Rey JA: Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int J Oncol. 42:848–862. 2013. | |
Tabernero MD, Maillo A, Gil-Bellosta CJ, Castrillo A, Sousa P, Merino M and Orfao A: Gene expression profiles of meningiomas are associated with tumor cytogenetics and patient outcome. Brain Pathol. 19:409–420. 2009. View Article : Google Scholar : PubMed/NCBI | |
Keller A, Ludwig N, Backes C, Romeike BFM, Comtesse N, Henn W, Steudel W-I, Mawrin C, Lenhof H-P and Meese E: Genome wide expression profiling identifies specific deregulated pathways in meningioma. Int J Cancer. 124:346–351. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Liu J, Patel S, Cloughesy T, Lai A, Farooqi H, Seligson D, Dong J, Liau L, Becker D, Mischel P, Shams S and Nelson S: Genomic landscape of meningiomas. Brain Pathol. 20:751–762. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Magán E, Campos-Martín Y, Mur P, Fiaño C, Ribalta T, García JF, Rey JA, Rodríguez de Lope A, Mollejo M and Meléndez B: Genetic alterations associated with progression and recurrence in meningiomas. J Neuropathol Exp Neurol. 71:882–893. 2012.PubMed/NCBI | |
Torres-Martin M, Lassaletta L, de Campos JM, Isla A, Gavilan J, Pinto GR, Burbano RR, Latif F, Melendez B, Castresana JS and Rey JA: Global profiling in vestibular schwannomas shows critical deregulation of microRNAs and upregulation in those included in chromosomal region 14q32. PloS One. 8:e658682013. View Article : Google Scholar | |
Bush ML, Oblinger J, Brendel V, Santarelli G, Huang J, Akhmametyeva EM, Burns SS, Wheeler J, Davis J, Yates CW, Chaudhury AR, Kulp S, Chen CS, Chang LS, Welling DB and Jacob A: AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro Oncol. 13:983–999. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spear SA, Burns SS, Oblinger JL, Ren Y, Pan L, Kinghorn AD, Welling DB and Chang LS: Natural compounds as potential treatments of NF2-deficient schwannoma and meningioma: cucurbitacin D and goyazensolide. Otol Neurotol. 34:1519–1527. 2013. View Article : Google Scholar : PubMed/NCBI | |
Johnson WE, Li C and Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 8:118–127. 2007. View Article : Google Scholar : PubMed/NCBI | |
MAQC Consortium. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber PK, et al: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 24:1151–1161. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou K, Wang G, Wang Y, Jin H, Yang S and Liu C: The potential involvement of E-cadherin and beta-catenins in meningioma. PloS One. 5:e112312010. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Kong D, Li Y and Sarkar FH: PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets. 10:38–41. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moriyama T, Kataoka H, Kawano H, Yokogami K, Nakano S, Goya T, Uchino H, Koono M and Wakisaka S: Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans. Cancer Lett. 124:149–155. 1998. View Article : Google Scholar : PubMed/NCBI | |
Cipriani NA, Abidoye OO, Vokes E and Salgia R: MET as a target for treatment of chest tumors. Lung Cancer. 63:169–179. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lai AZ, Abella JV and Park M: Crosstalk in Met receptor oncogenesis. Trends Cell Biol. 19:542–551. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ and Geng JG: Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res. 21:609–626. 2011. View Article : Google Scholar | |
Dai CF, Jiang YZ, Li Y, Wang K, Liu PS, Patankar MS and Zheng J: Expression and roles of Slit/Robo in human ovarian cancer. Histochem Cell Biol. 135:475–485. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zanata SM, Hovatta I, Rohm B and Püschel AW: Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J Neurosci. 22:471–477. 2002.PubMed/NCBI | |
Hota PK and Buck M: Thermodynamic characterization of two homologous protein complexes: associations of the semaphorin receptor plexin-B1 RhoGTPase binding domain with Rnd1 and active Rac1. Protein Sci. 18:1060–1071. 2009. View Article : Google Scholar | |
Oue E, Lee JW, Sakamoto K, Iimura T, Aoki K, Kayamori K, Michi Y, Yamashiro M, Harada K, Amagasa T and Yamaguchi A: CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction. Biochem Biophys Res Commun. 424:456–461. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li YH, Ghavampur S, Bondallaz P, Will L, Grenningloh G and Püschel AW: Rnd1 regulates axon extension by enhancing the microtubule destabilizing activity of SCG10. J Biol Chem. 284:363–371. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, Salmivirta K and Salmi M: The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood. 110:1864–1870. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eylar EH, Szymanska I, Ishaque A, Ramwani J and Dubiski S: Localization of the P2 protein in peripheral nerve myelin. J Immunol. 124:1086–1092. 1980.PubMed/NCBI | |
Everly JL, Brady RO and Quarles RH: Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein. J Neurochem. 21:329–334. 1973. View Article : Google Scholar : PubMed/NCBI | |
Bottos A, Rissone A, Bussolino F and Arese M: Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci. 68:2655–2666. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alenius M and Bohm S: Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection. J Biol Chem. 272:26083–26086. 1997. View Article : Google Scholar : PubMed/NCBI | |
Campos B, Warta R, Chaisaingmongkol J, Geiselhart L, Popanda O, Hartmann C, von Deimling A, Unterberg A, Plass C, Schmezer P and Herold-Mende C: Epigenetically mediated downregulation of the differentiation-promoting chaperon protein CRABP2 in astrocytic gliomas. Int J Cancer. 131:1963–1968. 2012. View Article : Google Scholar : PubMed/NCBI | |
Konac E, Varol N, Yilmaz A, Menevse S and Sozen S: DNA methyltransferase inhibitor-mediated apoptosis in the Wnt/β-catenin signal pathway in a renal cell carcinoma cell line. Exp Biol Med. 238:1009–1016. 2013.PubMed/NCBI | |
Rose RA and Giles WR: Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol. 586:353–366. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gjerstorff MF and Ditzel HJ: An overview of the GAGE cancer/ testis antigen family with the inclusion of newly identified members. Tissue Antigens. 71:187–192. 2008. View Article : Google Scholar : PubMed/NCBI |