1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar
|
2
|
Ohlmann CH, Siemer S and Stöckle M:
Resection of metastases from prostate cancer. Urologe A.
51:363–367. 2012.(In German).
|
3
|
Saleem M, Adhami VM, Zhong W, et al: A
novel biomarker for staging human prostate adenocarcinoma:
overexpression of matriptase with concomitant loss of its
inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer
Epidemiol Biomarkers Prev. 15:217–227. 2006. View Article : Google Scholar
|
4
|
Simpson AJ, Caballero OL, Jungbluth A,
Chen YT and Old LJ: Cancer/testis antigens, gametogenesis and
cancer. Nat Rev Cancer. 5:615–625. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zendman AJ, Ruiter DJ and Van Muijen GN:
Cancer/testis-associated genes: identification, expression profile,
and putative function. J Cell Physiol. 194:272–288. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Garg M, Chaurasiya D, Rana R, et al:
Sperm-associated antigen 9, a novel cancer testis antigen, is a
potential target for immunotherapy in epithelial ovarian cancer.
Clin Cancer Res. 13:1421–1428. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Garg M, Kanojia D, Suri S and Suri A:
Small interfering RNA-mediated downregulation of SPAG9 inhibits
cervical tumor growth. Cancer. 115:5688–5699. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kanojia D, Garg M, Gupta S, Gupta A and
Suri A: Sperm-associated antigen 9, a novel biomarker for early
detection of breast cancer. Cancer Epidemiol Biomarkers Prev.
18:630–639. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Garg M, Kanojia D, Salhan S, et al:
Sperm-associated antigen 9 is a biomarker for early cervical
carcinoma. Cancer. 115:2671–2683. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chung MS, Lee SH, Lee DH and Chung BH:
Evaluation of the 7th American Joint Committee on Cancer TNM
staging system for prostate cancer in point of classification of
bladder neck invasion. Jpn J Clin Oncol. 43:184–188. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Van der Kwast T, Bubendorf L, Mazerolles
C, et al: Guidelines on processing and reporting of prostate
biopsies: the 2013 update of the Pathology Committee of the
European Randomized Study of Screening for Prostate Cancer (ERSPC).
Virchows Arch. 463:367–377. 2013.PubMed/NCBI
|
12
|
Chen F, Wang M, Bai J, et al: Role of
RUNX3 in suppressing metastasis and angiogenesis of human prostate
cancer. PLoS One. 9:e869172014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mei PJ, Bai J, Liu H, et al: RUNX3
expression is lost in glioma and its restoration causes drastic
suppression of tumor invasion and migration. J Cancer Res Clin
Oncol. 137:1823–1830. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen F, Bai J, Li W, et al: RUNX3
suppresses migration, invasion and angiogenesis of human renal cell
carcinoma. PLoS One. 8:e562412013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jagadish N, Rana R, Selvi R, et al:
Characterization of a novel human sperm-associated antigen 9
(SPAG9) having structural homology with c-Jun N-terminal
kinase-interacting protein. Biochem J. 389:73–82. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Burks DJ, Carballada R, Moore HD and
Saling PM: Interaction of a tyrosine kinase from human sperm with
the zona pellucida at fertilization. Science. 269:83–86. 1995.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Luconi M, Krausz C, Forti G and Baldi E:
Extracellular calcium negatively modulates tyrosine phosphorylation
and tyrosine kinase activity during capacitation of human
spermatozoa. Biol Reprod. 55:207–216. 1996. View Article : Google Scholar
|
18
|
Garg M, Kanojia D, Khosla A, et al:
Sperm-associated antigen 9 is associated with tumor growth,
migration, and invasion in renal cell carcinoma. Cancer Res.
68:8240–8248. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mocarska A, Staroslawska E, Iwonna ZC, et
al: Diagnostic imaging of the prostate cancer. Pol Merkur Lekarski.
33:357–363. 2012.(In Polish).
|
20
|
Sfoungaristos S and Perimenis P: Clinical
and pathological variables that predict changes in tumour grade
after radical prostatectomy in patients with prostate cancer. Can
Urol Assoc J. 7:E93–E97. 2013. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Hynes RO: Metastatic potential: generic
predisposition of the primary tumor or rare, metastatic variants -
or both? Cell. 113:821–823. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Halbersztadt A, Halon A, Pajak J,
Robaczynski J, Rabczynski J and St Gabrys M: The role of matrix
metalloproteinases in tumor invasion and metastasis. Ginekol Pol.
77:63–71. 2006.(In Polish).
|
23
|
Zhang XY, Hong BF, Chen GF, Lu YL and
Zhong M: Significance of MMP2 and MMP9 expression in prostate
cancer. Zhonghua Nan Ke Xue. 11:359–361. 3642005.(In Chinese).
|
24
|
Jinga DC, Blidaru A, Condrea I, et al:
MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in
breast cancer: correlations with prognostic factors. J Cell Mol
Med. 10:499–510. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Giannelli G, Erriquez R, Fransvea E, et
al: Proteolytic imbalance is reversed after therapeutic surgery in
breast cancer patients. Int J Cancer. 109:782–785. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen Y, Wei X, Guo C, et al: Runx3
suppresses gastric cancer metastasis through inactivation of MMP9
by upregulation of TIMP-1. Int J Cancer. 129:1586–1598. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Yi F, Ni W, Liu W, et al: SPAG9 is
overexpressed in human astro-cytoma and promotes cell proliferation
and invasion. Tumour Biol. 34:2849–2855. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Folkman J: Tumor angiogenesis: therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ellis LM, Rosen L and Gordon MS: Overview
of anti-VEGF therapy and angiogenesis. Part 1: Angiogenesis
inhibition in solid tumor malignancies. Clin Adv Hematol Oncol.
4:1–10. 2006.PubMed/NCBI
|
30
|
Shi Q, Le X, Abbruzzese JL, et al:
Constitutive Sp1 activity is essential for differential
constitutive expression of vascular endothelial growth factor in
human pancreatic adenocarcinoma. Cancer Res. 61:4143–4154.
2001.PubMed/NCBI
|
31
|
Cao Y, Guangqi E, Wang E, et al: VEGF
exerts an angiogenesis-independent function in cancer cells to
promote their malignant progression. Cancer Res. 72:3912–3918.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xie K, Wei D, Shi Q and Huang S:
Constitutive and inducible expression and regulation of vascular
endothelial growth factor. Cytokine Growth Factor Rev. 15:297–324.
2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pal S, Datta K and Mukhopadhyay D: Central
role of p53 on regulation of vascular permeability factor/vascular
endothelial growth factor (VPF/VEGF) expression in mammary
carcinoma. Cancer Res. 61:6952–6957. 2001.PubMed/NCBI
|
34
|
Guma M, Rius J, Duong-Polk KX, Haddad GG,
Lindsey JD and Karin M: Genetic and pharmacological inhibition of
JNK ameliorates hypoxia-induced retinopathy through interference
with VEGF expression. Proc Natl Acad Sci USA. 106:8760–8765. 2009.
View Article : Google Scholar : PubMed/NCBI
|