1
|
Yuequan J, Shifeng C and Bing Z:
Prognostic factors and family history for survival of esophageal
squamous cell carcinoma patients after surgery. Ann Thorac Surg.
90:908–913. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Boman BM and Wicha MS: Cancer stem cells:
a step toward the cure. J Clin Oncol. 26:2795–2799. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wicha MS, Liu S and Dontu G: Cancer stem
cells: an old idea - a paradigm shift. Cancer Res. 66:1883–1890.
2006. View Article : Google Scholar
|
5
|
Hermann PC, Huber SL, Herrler T, et al:
Distinct populations of cancer stem cells determine tumor growth
and metastatic activity in human pancreatic cancer. Cell Stem Cell.
1:313–323. 2007. View Article : Google Scholar
|
6
|
Frank NY, Margaryan A, Huang Y, et al:
ABCB5-mediated doxorubicin transport and chemoresistance in human
malignant melanoma. Cancer Res. 65:4320–4333. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Y, Wang Z, Yu J, et al: Cancer
stem-like cells contribute to cisplatin resistance and progression
in bladder cancer. Cancer Lett. 322:70–77. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cho RW and Clarke MF: Recent advances in
cancer stem cells. Curr Opin Genet Dev. 18:48–53. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tilghman J, Wu H, Sang Y, et al: HMMR
maintains the stemness and tumorigenicity of glioblastoma stem-like
cells. Cancer Res. 74:3168–3179. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hirsch D, Barker N, McNeil N, et al: LGR5
positivity defines stem-like cells in colorectal cancer.
Carcinogenesis. 35:849–858. 2014. View Article : Google Scholar
|
11
|
Ding K, Banerjee A, Tan S, et al: Artemin,
a member of the glial cell line-derived neurotrophic factor family
of ligands, is HER2 regulated and mediates acquired Trastuzumab
resistance by promoting cancer stem cell-like behaviour in mammary
carcinoma cells. J Biol Chem. 289:16057–16071. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liepinsh E, Ilag LL, Otting G and Ibanez
CF: NMR structure of the death domain of the p75 neurotrophin
receptor. EMBO J. 16:4999–5005. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rabizadeh S, Oh J, Zhong LT, et al:
Induction of apoptosis by the low-affinity NGF receptor. Science.
261:345–348. 1993. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bibel M and Barde YA: Neurotrophins: key
regulators of cell fate and cell shape in the vertebrate nervous
system. Genes Dev. 14:2919–2937. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Civenni G, Walter A, Kobert N, et al:
Human CD271-positive melanoma stem cells associated with metastasis
establish tumor heterogeneity and long-term growth. Cancer Res.
71:3098–3109. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boiko AD, Razorenova OV, van de Rijn M, et
al: Human melanoma-initiating cells express neural crest nerve
growth factor receptor CD271. Nature. 466:133–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Imai T, Tamai K, Oizumi S, et al: CD271
defines a stem cell-like population in hypopharyngeal cancer. PLoS
One. 8:e620022013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Okumura T, Shimada Y, Imamura M and
Yasumoto S: Neurotrophin receptor p75(NTR) characterizes human
esophageal keratinocyte stem cells in vitro. Oncogene.
22:4017–4026. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Okumura T, Tsunoda S, Mori Y, et al: The
biological role of the low-affinity p75 neurotrophin receptor in
esophageal squamous cell carcinoma. Clin Cancer Res. 12:5096–5103.
2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Huang SD, Yuan Y, Liu XH, et al:
Self-renewal and chemotherapy resistance of p75NTR positive cells
in esophageal squamous cell carcinomas. BMC Cancer. 9:92009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Clarke MF, Dick JE, Dirks PB, et al:
Cancer stem cells -perspectives on current status and future
directions: AACR Workshop on cancer stem cells. Cancer Res.
66:9339–9344. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Eyler CE and Rich JN: Survival of the
fittest: cancer stem cells in therapeutic resistance and
angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tirino V, Desiderio V, d‘Aquino R, et al:
Detection and characterization of CD133+ cancer stem
cells in human solid tumours. PLoS One. 3:e34692008. View Article : Google Scholar
|
24
|
Wang YC, Yo YT, Lee HY, et al:
ALDH1-bright epithelial ovarian cancer cells are associated with
CD44 expression, drug resistance, and poor clinical outcome. Am J
Pathol. 180:1159–1169. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Marcato P, Dean CA, Pan D, et al: Aldehyde
dehydrogenase activity of breast cancer stem cells is primarily due
to isoform ALDH1A3 and its expression is predictive of metastasis.
Stem Cells. 29:32–45. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang F, Qiu Q, Khanna A, et al: Aldehyde
dehydrogenase 1 is a tumor stem cell-associated marker in lung
cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hellsten R, Johansson M, Dahlman A,
Sterner O and Bjartell A: Galiellalactone inhibits stem cell-like
ALDH-positive prostate cancer cells. PLoS One. 6:e221182011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun H, Jia J, Wang X, et al:
CD44(+)/CD24(−) breast cancer cells isolated from MCF-7 cultures
exhibit enhanced angiogenic properties. Clin Transl Oncol.
15:46–54. 2012. View Article : Google Scholar
|
29
|
Meng E, Long B, Sullivan P, et al:
CD44+/CD24− ovarian cancer cells demonstrate
cancer stem cell properties and correlate to survival. Clin Exp
Metastasis. 29:939–948. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tirino V, Camerlingo R, Franco R, et al:
The role of CD133 in the identification and characterisation of
tumour-initiating cells in non-small-cell lung cancer. Eur J
Cardiothorac Surg. 36:446–453. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Piao LS, Hur W, Kim TK, et al:
CD133+ liver cancer stem cells modulate radioresistance
in human hepatocellular carcinoma. Cancer Lett. 315:129–137. 2012.
View Article : Google Scholar
|
32
|
Bertolini G, Roz L, Perego P, et al:
Highly tumorigenic lung cancer CD133+ cells display
stem-like features and are spared by cisplatin treatment. Proc Natl
Acad Sci USA. 106:16281–16286. 2009. View Article : Google Scholar
|
33
|
Meng X, Li M, Wang X, Wang Y and Ma D:
Both CD133+ and CD133− subpopulations of A549
and H446 cells contain cancer-initiating cells. Cancer Sci.
100:1040–1046. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Redmer T, Welte Y, Behrens D, et al: The
nerve growth factor receptor CD271 is crucial to maintain
tumorigenicity and stem-like properties of melanoma cells. PLoS
One. 9:e925962014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Balic M, Lin H, Young L, et al: Most early
disseminated cancer cells detected in bone marrow of breast cancer
patients have a putative breast cancer stem cell phenotype. Clin
Cancer Res. 12:5615–5621. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sun L, Mathews LA, Cabarcas SM, et al:
Epigenetic regulation of SOX9 by the NF-κB signaling pathway in
pancreatic cancer stem cells. Stem Cells. 31:1454–1466. 2013.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen DL, Zeng ZL, Yang J, et al: L1CAM
promotes tumor progression and metastasis and is an independent
unfavorable prognostic factor in gastric cancer. J Hematol Oncol.
6:432013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ben Q, An W, Fei J, et al: Downregulation
of L1CAM inhibits proliferation, invasion and arrests cell cycle
progression in pancreatic cancer cells. Exp Ther Med. 7:785–790.
2014.PubMed/NCBI
|
39
|
Schirmer U, Doberstein K, Rupp AK, et al:
Role of miR-34a as a suppressor of L1CAM in endometrial carcinoma.
Oncotarget. 5:462–472. 2014.PubMed/NCBI
|
40
|
Schirmer U, Fiegl H, Pfeifer M, et al:
Epigenetic regulation of L1CAM in endometrial carcinoma: comparison
to cancer-testis (CT-X) antigens. BMC Cancer. 13:1562013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Yue D, Fan Q, Chen X, et al: Epigenetic
inactivation of SPINT2 is associated with tumor suppressive
function in esophageal squamous cell carcinoma. Exp Cell Res.
322:149–158. 2014. View Article : Google Scholar
|