1
|
Roberts ME, Neville E, Berrisford RG,
Antunes G and Ali NJ: BTS Pleural Disease Guideline Group:
Management of a malignant pleural effusion: British Thoracic
Society Pleural Disease Guideline 2010. Thorax. 65:ii32–ii40. 2010.
View Article : Google Scholar
|
2
|
Bielsa S, Martín-Juan J, Porcel JM and
Rodríguez-Panadero F: Diagnostic and prognostic implications of
pleural adhesions in malignant effusions. J Thorac Oncol.
3:1251–1256. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Marazioti A, Blackwell TS and Stathopoulos
GT: The lymphatic system in malignant pleural effusion. Drain or
immune switch? Am J Respir Crit Care Med. 189:626–627. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Aguiar LM, Antonangelo L, Vargas FS,
Zerbini MC, Sales MM, Uip DE and Saldiva PH: Malignant and
tuberculous pleural effusions: immunophenotypic cellular
characterization. Clinics (Sao Paulo). 63:637–644. 2008. View Article : Google Scholar
|
5
|
Muller YD, Seebach JD, Bühler LH, Pascual
M and Golshayan D: Transplantation tolerance: clinical potential of
regulatory T cells. Self Nonself. 2:26–34. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gregori S, Bacchetta R, Passerini L,
Levings MK and Roncarolo MG: Isolation, expansion, and
characterization of human natural and adaptive regulatory cells.
Methods Mol Biol. 380:83–106. 2007. View Article : Google Scholar
|
7
|
Wilke CM, Wu K, Zhao E, Wang G and Zou W:
Prognostic significance of regulatory T cells in tumor. Int J
Cancer. 127:748–758. 2010.PubMed/NCBI
|
8
|
Qin XJ, Shi HZ, Deng JM, Liang QL, Jiang J
and Ye ZJ: CCL22 recruits CD4-positive CD25-positive regulatory T
cells into malignant pleural effusion. Clin Cancer Res.
15:2231–2237. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bettelli E, Oukka M and Kuchroo VK:
TH-17 cells in the circle of immunity and autoimmunity.
Nat Immunol. 8:345–350. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kryczek I, Banerjee M, Cheng P, et al:
Phenotype, distribution, generation, and functional and clinical
relevance of Th17 cells in the human tumor environments. Blood.
114:1141–1149. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ye ZJ, Zhou Q, Gu YY, et al: Generation
and differentiation of IL-17-producing CD4+ T cells in
malignant pleural effusion. J Immunol. 185:6348–6354. 2010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Mizukami Y, Kono K, Kawaguchi Y, Akaike H,
Kamimura K, Sugai H and Fujii H: CCL17 and CCL22 chemokines within
tumor microenvironment are related to accumulation of
Foxp3+ regulatory T cells in gastric cancer. Int J
Cancer. 122:2286–2293. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin X, Chen M, Liu Y, Guo Z, He X, Brand D
and Zheng SG: Advances in distinguishing natural from induced
Foxp3+ regulatory T cells. Int J Clin Exp Pathol.
6:116–123. 2013.
|
14
|
Larmonier N, Marron M, Zeng Y, et al:
Tumor-derived CD4+CD25+ regulatory T cell
suppression of dendritic cell function involves TGF-beta and IL-10.
Cancer Immunol Immunother. 56:48–59. 2007. View Article : Google Scholar
|
15
|
Badoual C, Hans S, Rodriguez J, et al:
Prognostic value of tumor-infiltrating CD4+ T-cell
subpopulations in head and neck cancers. Clin Cancer Res.
12:465–472. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kosmaczewska A, Ciszak L, Potoczek S and
Frydecka I: The significance of Treg cells in defective tumor
immunity. Arch Immunol Ther Exp (Warsz). 56:181–191. 2008.
View Article : Google Scholar
|
17
|
Ibrahim L, Salah M, Rahman AA, Zeidan A
and Ragb M: Crucial role of CD4+CD25+
FOXP3+ T regulatory cell, interferon-γ and
interleukin-16 in malignant and tuberculous pleural effusions.
Immunol Invest. 42:122–136. 2013. View Article : Google Scholar
|
18
|
Harrington LE, Hatton RD, Mangan PR,
Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin
17-producing CD4+ effector T cells develop via a lineage
distinct from the T helper type 1 and 2 lineages. Nat Immunol.
6:1123–1132. 2005. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Prabhala RH, Pelluru D, Fulciniti M, et
al: Elevated IL-17 produced by TH17 cells promotes myeloma cell
growth and inhibits immune function in multiple myeloma. Blood.
115:5385–5392. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tosolini M, Kirilovsky A, Mlecnik B, et
al: Clinical impact of different classes of infiltrating T
cytotoxic and helper cells (Th1, th2, treg, th17) in patients with
colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Qi W, Huang X and Wang J: Correlation
between Th17 cells and tumor microenvironment. Cell Immunol.
285:18–22. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Iida T, Iwahashi M, Katsuda M, et al:
Tumor-infiltrating CD4+ Th17 cells produce IL-17 in
tumor microenvironment and promote tumor progression in human
gastric cancer. Oncol Rep. 25:1271–1217. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gu FM, Li QL, Gao Q, et al: IL-17 induces
AKT-dependent IL-6/ JAK2/STAT3 activation and tumor progression in
hepatocellular carcinoma. Mol Cancer. 10:1502011. View Article : Google Scholar
|
24
|
Martin-Orozco N, Muranski P, et al: T
helper 17 cells promote cytotoxic T cell activation in tumor
immunity. Immunity. 31:787–798. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ayyoub M, Deknuydt F, Raimbaud I, Dousset
C, Leveque L, Bioley G and Valmori D: Human memory
FOXP3+ Tregs secrete IL-17 ex vivo and constitutively
express the TH17 lineage- specific transcription factor
RORγt. Proc Natl Acad Sci USA. 106:8635–8640. 2009. View Article : Google Scholar
|
26
|
Weaver CT and Hatton RD: Interplay between
the TH17 and TReg cell lineages: a (co-) evolutionary perspective.
Nat Rev Immunol. 9:883–889. 2009. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou L, Lopes JE, Chong MM, et al:
TGF-beta-induced Foxp3 inhibits TH17 cell
differentiation by antagonizing RORγt function. Nature.
453:236–240. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kimura A and Kishimoto T: IL-6: regulator
of Treg/Th17 balance. Eur J Immunol. 40:1830–1835. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Smith AL, Robin TP and Ford HL: Molecular
pathways: targeting the TGF-β pathway for cancer therapy. Clin
Cancer Res. 18:4514–4521. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hamidullah, Changkija B and Konwar R: Role
of interleukin-10 in breast cancer. Breast Cancer Res Treat.
133:11–21. 2012. View Article : Google Scholar
|
31
|
Olkhanud PB, Baatar D, Bodogai M, et al:
Breast cancer lung metastasis requires expression of chemokine
receptor CCR4 and regulatory T cells. Cancer Res. 69:5996–6004.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Curiel TJ, Coukos G, Zou L, et al:
Specific recruitment of regulatory T cells in ovarian carcinoma
fosters immune privilege and predicts reduced survival. Nat Med.
10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Franciszkiewicz K, Boissonnas A, Boutet M,
Combadière C and Mami-Chouaib F: Role of chemokines and chemokine
receptors in shaping the effector phase of the antitumor immune
response. Cancer Res. 72:6325–6332. 2012. View Article : Google Scholar : PubMed/NCBI
|