1
|
Maynard S, Schurman SH, Harboe C, de
Souza-Pinto NC and Bohr VA: Base excision repair of oxidative DNA
damage and association with cancer and aging. Carcinogenesis.
30:2–10. 2009. View Article : Google Scholar :
|
2
|
Singhal S, Vachani A, Antin-Ozerkis D,
Kaiser LR and Albelda SM: Prognostic implications of cell cycle,
apoptosis, and angiogenesis biomarkers in non-small cell lung
cancer: a review. Clin Cancer Res. 11:3974–3986. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Aamodt HM, Clifford A, Ellingson CC,
Burnett SH, Murray BK and O’Neill KL: Apoptosis through
Fas-mediated suicide gene induction in mouse melanoma. AACR.
2005:4142005.
|
4
|
Mashima T, Naito M and Tsuruo T:
Caspase-mediated cleavage of cytoskeletal actin plays a positive
role in the process of morphological apoptosis. Oncogene.
18:2423–2430. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Mashima T, Naito M, Noguchi K, Miller DK,
Nicholson DW and Tsuruo T: Actin cleavage by CPP-32/apopain during
the development of apoptosis. Oncogene. 14:1007–1012. 1997.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Caroppi P, Sinibaldi F, Fiorucci L and
Santucci R: Apoptosis and human diseases: mitochondrion damage and
lethal role of released cytochrome c as proapoptotic protein. Curr
Med Chem. 16:4058–4065. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Estaquier J, Vallette F, Vayssiere JL and
Mignotte B: The mitochondrial pathways of apoptosis. Adv Exp Med
Biol. 942:157–183. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
van Beek TA and Montoro P: Chemical
analysis and quality control of Ginkgo biloba leaves, extracts, and
phytopharmaceuticals. J Chromatogr A. 1216:2002–2032. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yoshikawa T, Naito Y and Kondo M: Ginkgo
biloba leaf extract: review of biological actions and clinical
applications. Antioxid Redox Signal. 1:469–480. 1999. View Article : Google Scholar
|
10
|
Luo Y, Smith JV, Paramasivam V, et al:
Inhibition of amyloid-beta aggregation and caspase-3 activation by
the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA.
99:12197–12202. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Y, Chen AY, Li M, Chen C and Yao Q:
Ginkgo biloba extract kaempferol inhibits cell proliferation and
induces apoptosis in pancreatic cancer cells. J Surg Res.
148:17–23. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Waterman PG and Mole S: Analysis of
Phenolic Plant Metabolites. Blackwell Scientific Publications;
Oxford, UK: 1994
|
13
|
Yen GC and Duh PD: Scavenging effect of
methanolic extracts of peanut hulls on free-radical and
active-oxygen species. J Agr Food Chem. 42:629–632. 1994.
View Article : Google Scholar
|
14
|
Imlay JA, Chin SM and Linn S: Toxic DNA
damage by hydrogen peroxide through the Fenton reaction in vivo and
in vitro. Science. 240:640–642. 1988. View Article : Google Scholar : PubMed/NCBI
|
15
|
Orrenius S: Apoptosis: molecular
mechanisms and implications for human disease. J Intern Med.
237:529–536. 1995. View Article : Google Scholar : PubMed/NCBI
|
16
|
Eguchi R, Toné S, Suzuki A, et al:
Possible involvement of caspase-6 and -7 but not caspase-3 in the
regulation of hypoxia-induced apoptosis in tube-forming endothelial
cells. Exp Cell Res. 315:327–335. 2009. View Article : Google Scholar
|
17
|
Ghobrial IM, Witzig TE and Adjei AA:
Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin.
55:178–194. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martinou JC and Youle RJ: Mitochondria in
apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev
Cell. 21:92–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Youle RJ and Strasser A: The BCL-2 protein
family: opposing activities that mediate cell death. Nat Rev Mol
Cell Biol. 9:47–59. 2008. View
Article : Google Scholar
|
20
|
Fan TJ, Han LH, Cong RS and Liang J:
Caspase family proteases and apoptosis. Acta Biochim Biophys Sin
(Shanghai). 37:719–727. 2005. View Article : Google Scholar
|
21
|
Besson A, Dowdy SF and Roberts JM: CDK
inhibitors: cell cycle regulators and beyond. Dev Cell. 14:159–169.
2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Levav-Cohen Y, Goldberg Z, Tan KH,
Alsheich-Bartok O, Zuckerman V, Haupt S and Haupt Y: The p53-Mdm2
loop: A critical juncture of stress response. Subcell Biochem.
85:161–186. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Shieh SY, Ikeda M, Taya Y and Prives C:
DNA damage-induced phosphorylation of p53 alleviates inhibition by
MDM2. Cell. 91:325–334. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu J, Lian LJ, Wu C, Wang XF, Fu WY and Xu
LH: Lead induces oxidative stress, DNA damage and alteration of
p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol.
46:1488–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sakaguchi K, Herrera JE, Saito S, et al:
DNA damage activates p53 through a phosphorylation-acetylation
cascade. Genes Dev. 12:2831–2841. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Teufel DP, Bycroft M and Fersht AR:
Regulation by phosphorylation of the relative affinities of the
N-terminal transactivation domains of p53 for p300 domains and
Mdm2. Oncogene. 28:2112–2118. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fang J-Y and Lu Y-Y: Effects of histone
acetylation and DNA methylation on p21WAFI regulation.
World J Gastroenterol. 8:400–405. 2002.PubMed/NCBI
|