1
|
Al-Mubarak M, Sacher AG, Ocana A,
Vera-Badillo F, Seruga B and Amir E: Fulvestrant for advanced
breast cancer: a meta-analysis. Cancer Treat Rev. 39:753–758. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Lianidou ES, Mavroudis D and Georgoulias
V: Clinical challenges in the molecular characterization of
circulating tumour cells in breast cancer. Br J Cancer.
108:2426–2432. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lavigne E, Holowaty EJ, Pan SY, et al:
Breast cancer detection and survival among women with cosmetic
breast implants: systematic review and meta-analysis of
observational studies. BMJ. 346:Apr 29–2013.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
4
|
Stites EC and Ravichandran KS: A systems
perspective of ras signaling in cancer. Clin Cancer Res.
15:1510–1513. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Saxena N, Lahiri SS, Hambarde S and
Tripathi RP: RAS: target for cancer therapy. Cancer Invest.
26:948–955. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu YF, Deth RC and Devys D: SH3
domain-dependent association of huntingtin with epidermal growth
factor receptor signaling complexes. J Biol Chem. 272:8121–8124.
1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vigil D, Cherfils J, Rossman KL and Der
CJ: Ras superfamily GEFs and GAPs: validated and tractable targets
for cancer therapy? Nat Rev Cancer. 10:842–857. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pamonsinlapatham P, Hadj-Slimane R,
Lepelletier Y, et al: p120-Ras GTPase activating protein (RasGAP):
a multi-interacting protein in downstream signaling. Biochimie.
91:320–328. 2009. View Article : Google Scholar
|
9
|
Hu X, Stern HM, Ge L, et al: Genetic
alterations and oncogenic pathways associated with breast cancer
subtypes. Mol Cancer Res. 7:511–522. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fang JY and Richardson BC: The MAPK
signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327.
2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cheang MC, Chia SK, Voduc D, et al: Ki67
index, HER2 status, and prognosis of patients with luminal B breast
cancer. J Natl Cancer Inst. 101:736–750. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Aksoy S, Dizdar O, Harputluoglu H and
Altundag K: Demographic, clinical, and pathological characteristics
of Turkish triple-negative breast cancer patients: single center
experience. Ann Oncol. 18:1904–1906. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bauer KR, Brown M, Cress RD, Parise CA and
Caggiano V: Descriptive analysis of estrogen receptor
(ER)-negative, progesterone receptor (PR)-negative, and
HER2-negative invasive breast cancer, the so-called triple-negative
phenotype: a population-based study from the California cancer
Registry. Cancer. 109:1721–1728. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xue C, Wang X, Peng R, et al:
Distribution, clinicopathologic features and survival of breast
cancer subtypes in Southern China. Cancer Sci. 103:1679–1687. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Y, Cheng S, Zhang G, et al: Low
expression of RECK indicates a shorter survival for patients with
invasive breast cancer. Cancer Sci. 103:1084–1089. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu T, Zhang X, Shang M, et al:
Dysregulated expression of Slug, vimentin, and E-cadherin
correlates with poor clinical outcome in patients with basal-like
breast cancer. J Surg Oncol. 107:188–194. 2013. View Article : Google Scholar
|
17
|
Adam Maciejczyk A: New prognostic factors
in breast cancer. Adv Clin Exp Med. 22:5–15. 2013.PubMed/NCBI
|
18
|
do Carmo França-Botelho A, Ferreira MC,
França JL, França EL and Honorio-França AC: Breastfeeding and its
relationship with reduction of breast cancer: a review. Asian Pac J
Cancer Prev. 13:5327–5332. 2012. View Article : Google Scholar
|
19
|
Liedtke C, Mazouni C, Hess KR, et al:
Response to neoadjuvant therapy and long-term survival in patients
with triple-negative breast cancer. J Clin Oncol. 26:1275–1281.
2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Carey LA, Dees EC, Sawyer L, et al: The
triple negative paradox: primary tumor chemosensitivity of breast
cancer subtypes. Clin Cancer Res. 13:2329–2334. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cadoo KA, McArdle O, O’Shea AM, Power CP
and Hennessy BT: Management of unusual histological types of breast
cancer. Oncologist. 17:1135–1145. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Henkemeyer M, Rossi DJ, Holmyard DP, et
al: Vascular system defects and neuronal apoptosis in mice lacking
ras GTPase-activating protein. Nature. 377:695–701. 1995.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lapinski PE, Bauler TJ, Brown EJ, Hughes
ED, Saunders TL and King PD: Generation of mice with a conditional
allele of the p120 Ras GTPase-activating protein. Genesis.
45:762–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun D, Yu F, Ma Y, et al: MicroRNA-31
activates the RAS pathway and functions as an oncogenic MicroRNA in
human colorectal cancer by repressing RAS p21 GTPase activating
protein 1 (RASA1). J Biol Chem. 288:9508–9518. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Trahey M, Wong G, Halenbeck R, et al:
Molecular cloning of two types of GAP complementary DNA from human
placenta. Science. 242:1697–1700. 1988. View Article : Google Scholar : PubMed/NCBI
|
26
|
Moran MF, Koch CA, Anderson D, et al: Src
homology region 2 domains direct protein-protein interactions in
signal transduction. Proc Natl Acad Sci USA. 87:8622–8626. 1990.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Musacchio A, Gibson T, Rice P, Thompson J
and Saraste M: The PH domain: a common piece in the structural
patchwork of signalling proteins. Trends Biochem Sci. 18:343–348.
1993. View Article : Google Scholar : PubMed/NCBI
|
28
|
Clark JD, Lin LL, Kriz RW, et al: A novel
arachidonic acid-selective cytosolic PLA2 contains a
Ca(2+)-dependent translocation domain with homology to PKC and GAP.
Cell. 65:1043–1051. 1991. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gawler DJ, Zhang LJ, Reedijk M, Tung PS
and Moran MF: CaLB: a 43 amino acid calcium-dependent
membrane/phospholipid binding domain in p120 Ras GTPase-activating
protein. Oncogene. 10:817–825. 1995.PubMed/NCBI
|
30
|
Glennon TM, Villa J and Warshel A: How
does GAP catalyze the GTPase reaction of Ras? A computer simulation
study. Biochemistry. 39:9641–9651. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shurki A and Warshel A: Why does the Ras
switch ‘break’ by oncogenic mutations? Proteins. 55:1–10. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Denhardt DT: Signal-transducing protein
phosphorylation cascades mediated by Ras/Rho proteins in the
mammalian cell: the potential for multiplex signalling. Biochem J.
318:729–747. 1996.PubMed/NCBI
|
33
|
Cailliau K, Browaeys-Poly E and Vilain JP:
RasGAP is involved in signal transduction triggered by FGF1 in
Xenopus oocytes expressing FGFR1. FEBS Lett. 496:161–165. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Calvisi DF, Ladu S, Conner EA, et al:
Inactivation of Ras GTPase-activating proteins promotes
unrestrained activity of wild-type Ras in human liver cancer. J
Hepatol. 54:311–319. 2011. View Article : Google Scholar :
|