1
|
Rajkumar SV: Multiple myeloma: 2013 update
on diagnosis, risk-stratification, and management. Am J Hematol.
88:226–235. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Allegra A, Penna G, Alonci A, et al:
Monoclonal antibodies: potential new therapeutic treatment against
multiple myeloma. Eur J Haematol. 90:441–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wu Z, Puigserver P, Andersson U, et al:
Mechanisms controlling mitochondrial biogenesis and respiration
through the thermogenic coactivator PGC-1. Cell. 98:115–124. 1999.
View Article : Google Scholar : PubMed/NCBI
|
4
|
St-Pierre J, Drori S, Uldry M, et al:
Suppression of reactive oxygen species and neurodegeneration by the
PGC-1 transcriptional coactivators. Cell. 127:397–408. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Austin S and St-Pierre J: PGC1α and
mitochondrial metabolism - emerging concepts and relevance in
ageing and neurodegenerative disorders. J Cell Sci. 125:4963–4971.
2012. View Article : Google Scholar
|
6
|
Liang H and Ward WF: PGC-1alpha: a key
regulator of energy metabolism. Adv Physiol Educ. 30:145–151. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Wrann CD, White JP, Salogiannnis J, et al:
Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway.
Cell Metab. 18:649–659. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Puigserver P and Spiegelman BM: Peroxisome
proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1
alpha): transcriptional coactivator and metabolic regulator. Endocr
Rev. 24:78–90. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim MS, Sweeney TR, Shigenaga JK, et al:
Tumor necrosis factor and interleukin 1 decrease RXRalpha,
PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1,
PGC-1alpha, and PGC-1beta in liver cells. Metabolism. 56:267–279.
2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Y, Ba Y, Liu C, et al: PGC-1alpha
induces apoptosis in human epithelial ovarian cancer cells through
a PPARgamma-dependent pathway. Cell Res. 17:363–373. 2007.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Salem AF, Whitaker-Menezes D, Howell A,
Sotgia F and Lisanti MP: Mitochondrial biogenesis in epithelial
cancer cells promotes breast cancer tumor growth and confers
autophagy resistance. Cell Cycle. 11:4174–4180. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Do MT, Kim HG, Choi JH and Jeong HG:
Metformin induces microRNA-34a to downregulate the
Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of
wild-type p53 cancer cells to oxidative stress and therapeutic
agents. Free Radic Biol Med. 74:21–34. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
McGuirk S, Gravel SP, Deblois G, et al:
PGC-1α supports glutamine metabolism in breast cancer. Cancer
Metab. 1:222013. View Article : Google Scholar
|
14
|
Cao D, Zhou H, Zhao J, et al: PGC-1α
integrates glucose metabolism and angiogenesis in multiple myeloma
cells by regulating VEGF and GLUT-4. Oncol Rep. 31:1205–1210.
2014.PubMed/NCBI
|
15
|
Nishikawa T, Edelstein D, Du XL, et al:
Normalizing mitochondrial superoxide production blocks three
pathways of hyperglycaemic damage. Nature. 404:787–790. 2000.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Valle I, Alvarez-Barrientos A, Arza E, et
al: PGC-1alpha regulates the mitochondrial antioxidant defense
system in vascular endothelial cells. Cardiovasc Res. 66:562–573.
2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Edeas M: Strategies to target mitochondria
and oxidative stress by antioxidants: key points and perspectives.
Pharm Res. 28:2771–2779. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vurusaner B, Poli G and Basaga H: Tumor
suppressor genes and ROS: complex networks of interactions. Free
Radic Biol Med. 52:7–18. 2012. View Article : Google Scholar
|
19
|
Pei XY, Dai Y and Grant S: Synergistic
induction of oxidative injury and apoptosis in human multiple
myeloma cells by the proteasome inhibitor bortezomib and histone
deacetylase inhibitors. Clin Cancer Res. 10:3839–3852. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Pei XY, Dai Y and Grant S: The proteasome
inhibitor bortezomib promotes mitochondrial injury and apoptosis
induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple
myeloma cells. Leukemia. 17:2036–2045. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Feng R, Oton A, Mapara MY, et al: The
histone deacetylase inhibitor, PXD101, potentiates
bortezomib-induced anti-multiple myeloma effect by induction of
oxidative stress and DNA damage. Br J Haematol. 139:385–397. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang J and Yi J: Cancer cell killing via
ROS: to increase or decrease, that is the question. Cancer Biol
Ther. 7:1875–1884. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kong X, Wang R, Xue Y, et al: Sirtuin 3, a
new target of PGC-1alpha, plays an important role in the
suppression of ROS and mitochondrial biogenesis. PloS One.
5:e117072010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pearce EL, Walsh MC, Cejas PJ, et al:
Enhancing CD8 T-cell memory by modulating fatty acid metabolism.
Nature. 460:103–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wenz T: Regulation of mitochondrial
biogenesis and PGC-1α under cellular stress. Mitochondrion.
13:134–142. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Leick L, Lyngby SS, Wojtaszewski JF and
Pilegaard H: PGC-1alpha is required for training-induced prevention
of age-associated decline in mitochondrial enzymes in mouse
skeletal muscle. Exp Gerontol. 45:336–342. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Qu A, Jiang C, Xu M, et al: PGC-1alpha
attenuates neointimal formation via inhibition of vascular smooth
muscle cell migration in the injured rat carotid artery. Am J
Physiol Cell Physiol. 297:C645–C653. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hong YS, Hong SW, Kim SM, et al:
Bortezomib induces G2-M arrest in human colon cancer cells through
ROS-inducible phosphorylation of ATM-CHK1. Int J Oncol. 41:76–82.
2012.PubMed/NCBI
|
29
|
Song IS, Jeong YJ, Jeong SH, et al:
Combination treatment with 2-methoxyestradiol overcomes bortezomib
resistance of multiple myeloma cells. Exp Mol Med. 45:e502013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Nakata W, Hayakawa Y, Nakagawa H, et al:
Anti-tumor activity of the proteasome inhibitor bortezomib in
gastric cancer. Int J Oncol. 39:1529–1536. 2011.PubMed/NCBI
|
31
|
Finck BN and Kelly DP: PGC-1 coactivators:
inducible regulators of energy metabolism in health and disease. J
Clin Invest. 116:615–622. 2006. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Tennakoon JB, Shi Y, Han JJ, et al:
Androgens regulate prostate cancer cell growth via an
AMPK-PGC-1alpha-mediated metabolic switch. Oncogene. Nov
4–2013.(Epub ahead of print). View Article : Google Scholar
|
33
|
Girnun GD: The diverse role of the PPARγ
coactivator 1 family of transcriptional coactivators in cancer.
Semin Cell Dev Biol. 23:381–388. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang H and Manton KG: The role of
oxidative damage in mitochondria during aging: a review. Front
Biosci. 9:1100–1117. 2004. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Scarpulla RC, Vega RB and Kelly DP:
Transcriptional integration of mitochondrial biogenesis. Trends
Endocrinol Metab. 23:459–466. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Radak Z, Zhao Z, Koltai E, Ohno H and
Atalay M: Oxygen consumption and usage during physical exercise:
the balance between oxidative stress and ROS-dependent adaptive
signaling. Antioxid Redox Signal. 18:1208–1246. 2013. View Article : Google Scholar :
|
37
|
Sanchez WY, McGee SL, Connor T, et al:
Dichloroacetate inhibits aerobic glycolysis in multiple myeloma
cells and increases sensitivity to bortezomib. Br J Cancer.
108:1624–1633. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fujiwara S, Kawano Y, Yuki H, et al: PDK1
inhibition is a novel therapeutic target in multiple myeloma. Br J
Cancer. 108:170–178. 2013.PubMed/NCBI
|
39
|
Civitarese AE, Carling S, Heilbronn LK, et
al: Calorie restriction increases muscle mitochondrial biogenesis
in healthy humans. PLoS Med. 4:e762007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lopez-Lluch G, Hunt N, Jones B, et al:
Calorie restriction induces mitochondrial biogenesis and
bioenergetic efficiency. Proc Natl Acad Sci USA. 103:1768–1773.
2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pérez-Galán P, Roue G, Villamor N,
Montserrat E, Campo E and Colomer D: The proteasome inhibitor
bortezomib induces apoptosis in mantle-cell lymphoma through
generation of ROS and Noxa activation independent of p53 status.
Blood. 107:257–264. 2006. View Article : Google Scholar
|