1
|
Hao K, Luk JM, Lee NP, et al: Predicting
prognosis in hepatocellular carcinoma after curative surgery with
common clinicopathologic parameters. BMC Cancer. 9:3892009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Song TJ, Ip EW and Fong Y: Hepatocellular
carcinoma: current surgical management. Gastroenterology. 127(Suppl
1): S248–S260. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Paul SB, Gamanagatti SR, Mukund A, Abbas
SZ and Acharya SK: Transarterial chemoembolization for
hepatocellular carcinoma: significance of extrahepatic collateral
supply. Indian J Cancer. 48:339–344. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Y, Zhao Y, Fang S, Li Y and Li G:
Molecular cloning and alternative splicing analysis of hepatoma
associated gene HTA. Zhong Nan Da Xue Xue Bao Yi Xue Ban.
38:869–875. 2013.(In Chinese). PubMed/NCBI
|
5
|
Liu Y, Li Y, Guo F, et al: Identification
of HTA as a novel-specific marker for human hepatocellular
carcinoma. J Cancer Res Clin Oncol. 136:1187–1192. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu Y, Zhao Y, Ju Q, et al: Molecular
clone and functional study of a novel hepatoma associated gene. Int
J Oncol. 42:1105–1112. 2013.PubMed/NCBI
|
7
|
Scott MP: A rational nomenclature for
vertebrate homeobox (HOX) genes. Nucleic Acids Res. 21:1687–1688.
1993. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kawazoe Y, Sekimoto T, Araki M, Takagi K,
Araki K and Yamamura K: Region-specific gastrointestinal Hox code
during murine embryonal gut development. Dev Growth Differ.
44:77–84. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Abate-Shen C: Deregulated homeobox gene
expression in cancer: cause or consequence? Nat Rev Cancer.
2:777–785. 2002. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Samuel S and Naora H: Homeobox gene
expression in cancer: insights from developmental regulation and
deregulation. Eur J Cancer. 41:2428–2437. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Argiropoulos B and Humphries RK: Hox genes
in hematopoiesis and leukemogenesis. Oncogene. 26:6766–6776. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Kanai M, Hamada J, Takada M, et al:
Aberrant expressions of HOX genes in colorectal and hepatocellular
carcinomas. Oncol Rep. 23:843–851. 2010.PubMed/NCBI
|
13
|
Cillo C, Schiavo G, Cantile M, et al: The
HOX gene network in hepatocellular carcinoma. Int J Cancer.
129:2577–2587. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Boyault S, Rickman DS, de Reynies A, et
al: Transcriptome classification of HCC is related to gene
alterations and to new therapeutic targets. Hepatology. 45:42–52.
2007. View Article : Google Scholar
|
15
|
Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO
and Lobie PE: Human growth hormone-regulated HOXA1 is a human
mammary epithelial oncogene. J Biol Chem. 278:7580–7590. 2003.
View Article : Google Scholar
|
16
|
Zhai Y, Kuick R, Nan B, et al: Gene
expression analysis of preinvasive and invasive cervical squamous
cell carcinomas identifies HOXC10 as a key mediator of invasion.
Cancer Res. 67:10163–10172. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Naora H, Yang YQ, Montz FJ, Seidman JD,
Kurman RJ and Roden RB: A serologically identified tumor antigen
encoded by a homeobox gene promotes growth of ovarian epithelial
cells. Proc Natl Acad Sci USA. 98:4060–4065. 2001. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yamashita T, Tazawa S, Yawei Z, et al:
Suppression of invasive characteristics by antisense introduction
of overexpressed HOX genes in ovarian cancer cells. Int J Oncol.
28:931–938. 2006.PubMed/NCBI
|
19
|
Hamada J, Omatsu T, Okada F, et al:
Overexpression of homeobox gene HOXD3 induces coordinate expression
of metastasis-related genes in human lung cancer cells. Int J
Cancer. 93:516–525. 2001. View
Article : Google Scholar
|
20
|
Miyazaki YJ, Hamada J, Tada M, et al:
HOXD3 enhances motility and invasiveness through the
TGF-β-dependent and -independent pathways in A549 cells. Oncogene.
21:798–808. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ohta H, Hamada J, Tada M, et al:
HOXD3-overexpression increases integrin αvβ3 expression and
deprives E-cadherin while it enhances cell motility in A549 cells.
Clin Exp Metastasis. 23:381–390. 2006. View Article : Google Scholar
|
22
|
Grier DG, Thompson A, Kwasniewska A,
McGonigle GJ, Halliday HL and Lappin TR: The pathophysiology of HOX
genes and their role in cancer. J Pathol. 205:154–171. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bhatlekar S, Fields JZ and Boman BM: HOX
genes and their role in the development of human cancers. J Mol
Med. 92:811–823. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Y, Huang Q, Cheng JC, et al:
Homeobox A7 increases cell proliferation by up-regulation of
epidermal growth factor receptor expression in human granulosa
cells. Reprod Biol Endocrinol. 8:612010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nunes FD, de Almeida FC, Tucci R and de
Sousa SC: Homeobox genes: a molecular link between development and
cancer. Pesqui Odontol Bras. 17:94–98. 2003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ota T, Choi KB, Gilks CB, Leung PC and
Auersperg N: Cell type- and stage-specific changes in HOXA7 protein
expression in human ovarian folliculogenesis: possible role of
GDF-9. Differentiation. 74:1–10. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ota T, Asahina H, Park SH, et al: HOX
cofactors expression and regulation in the human ovary. Reprod Biol
Endocrinol. 6:492008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hartwell LH and Weinert TA: Checkpoints:
controls that ensure the order of cell cycle events. Science.
246:629–634. 1989. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kamb A, Gruis NA, Weaver-Feldhaus J, et
al: A cell cycle regulator potentially involved in genesis of many
tumor types. Science. 264:436–440. 1994. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pines J: Protein kinases and cell cycle
control. Semin Cell Biol. 5:399–408. 1994. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jung YJ, Lee KH, Choi DW, et al:
Reciprocal expressions of cyclin E and cyclin D1 in hepatocellular
carcinoma. Cancer Lett. 168:57–63. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Masaki T, Shiratori Y, Rengifo W, et al:
Cyclins and cyclin-dependent kinases: comparative study of
hepatocellular carcinoma versus cirrhosis. Hepatology. 37:534–543.
2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Dehay C and Kennedy H: Cell-cycle control
and cortical development. Nat Rev Neurosci. 8:438–450. 2007.
View Article : Google Scholar : PubMed/NCBI
|
34
|
van den Heuvel S and Harlow E: Distinct
roles for cyclin-dependent kinases in cell cycle control. Science.
262:2050–2054. 1993. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu QX, Wang XF, Ikeo K, Hirose S, Gehring
WJ and Gojobori T: Evolutionarily conserved transcription factor
Apontic controls the G1/S progression by inducing cyclin E during
eye development. Proc Natl Acad Sci USA. 111:9497–9502. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Gladden AB and Diehl JA: Cell cycle
progression without cyclin E/CDK2: breaking down the walls of
dogma. Cancer Cell. 4:160–162. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rath SL and Senapati S: Why are the
truncated cyclin Es more effective CDK2 activators than the
full-length isoforms? Biochemistry. 53:4612–4624. 2014. View Article : Google Scholar : PubMed/NCBI
|