1
|
Schütte K, Bornschein J and Malfertheiner
P: Hepatocellular carcinoma - epidemiological trends and risk
factors. Dig Dis. 27:80–92. 2009. View Article : Google Scholar
|
2
|
Xie SL, Zhu MG, Lv GY, Zhang Q and Wang
GY: The role of RhoC in the proliferation and apoptosis of
hepatocellular carcinoma cells. Med Oncol. 29:1802–1809. 2012.
View Article : Google Scholar
|
3
|
Cao H, Phan H and Yang LX: Improved
chemotherapy for hepatocellular carcinoma. Anticancer Res.
32:1379–1386. 2012.PubMed/NCBI
|
4
|
Nouso K: Current chemotherapies for
advanced hepatocellular carcinoma. Clin J Gastroenterol. 6:89–93.
2013. View Article : Google Scholar
|
5
|
Zhang X, Jia S, Yang S and Yang Y, Yang T
and Yang Y: Arsenic trioxide induces G2/M arrest in hepatocellular
carcinoma cells by increasing the tumor suppressor PTEN expression.
J Cell Biochem. 113:3528–3535. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Raistrick H and Smith G: Studies in the
biochemistry of micro-organisms: The metabolic products of
Aspergillus terreus Thom. A new mould metabolic product-terrein.
Biochem J. 29:606–611. 1935.PubMed/NCBI
|
7
|
Arakawa M, Someno T, Kawada M and Ikeda D:
A new terrein glucoside, a novel inhibitor of angiogenin secretion
in tumor angiogenesis. J Antibiot. 61:442–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Demasi M, Felicio AL, Pacheco AO, Leite
HG, Lima C and Andrade LH: Studies on terrein as a new class of
proteasome inhibitors. J Braz Chem Soc. 21:299–305. 2010.
View Article : Google Scholar
|
9
|
Liao WY, Shen CN, Lin LH, Yang YL, Han HY,
Chen JW, Kuo SC, Wu SH and Liaw CC: Asperjinone, a nor-neolignan,
and terrein, a suppressor of ABCG2-expressing breast cancer cells,
from thermophilic Aspergillus terreus. J Nat Prod. 75:630–635.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Porameesanaporn Y,
Uthaisang-Tanechpongtamb W, Jarintanan F, Jongrungruangchok S and
Thanomsub Wongsatayanon B: Terrein induces apoptosis in HeLa human
cervical carcinoma cells through p53 and ERK regulation. Oncol Rep.
29:1600–1608. 2013.PubMed/NCBI
|
11
|
Anisimov VN: Biology of aging and cancer.
Cancer Control. 14:23–31. 2007.PubMed/NCBI
|
12
|
Edinger AL and Thompson CB: Death by
design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol.
16:663–669. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gibbs JB: Mechanism-based target
identification and drug discovery in cancer research. Science.
287:1969–1973. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bergers G and Benjamin LE: Tumorigenesis
and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Schmitt CA and Lowe SW: Apoptosis and
therapy. J Pathol. 187:127–137. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiao L, Yin Y, Sun W, Zhang F, Zhang F and
Li Z: Enhanced production of (+)-terrein by Aspergillus terreus
strain PF26 with epigenetic modifier suberoylanilide hydroxamic
acid. Proc Biochem. 48:1635–1639. 2013. View Article : Google Scholar
|
17
|
Xu B, Yin Y, Zhang F, Li Z and Wang L:
Operating conditions optimization for (+)-terrein production in a
stirred bioreactor by Aspergillus terreus strain PF-26 from marine
sponge Phakellia fusca. Bioprocess Biosyst Eng. 35:1651–1655. 2012.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yin Y, Gao Q, Zhang F and Li Z: Medium
optimization for the high yield production of single (+)-terrein by
Aspergillus terreus strain PF-26 derived from marine sponge
Phakellia fusca. Process Biochem. 47:887–891. 2012. View Article : Google Scholar
|
19
|
Yin Y, Xu B, Li Z and Zhang B: Enhanced
production of (+)-terrein in fed-batch cultivation of Aspergillus
terreus strain PF-26 with sodium citrate. World J Microbiol
Biotechnol. 29:441–446. 2013. View Article : Google Scholar
|
20
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Evan GI and Vousden KH: Proliferation,
cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar
|
23
|
Luo W and Brouwer C: Pathview: an
R/Bioconductor package for pathway-based data integration and
visualization. Bioinformatics. 29:1830–1831. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Strese S, Fryknäs M, Larsson R and Gullbo
J: Effects of hypoxia on human cancer cell line chemosensitivity.
BMC Cancer. 13:3312013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Evan G and Littlewood T: A matter of life
and cell death. Science. 281:1317–1322. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
French PW, Donnellan M and McKenzie DR:
Electromagnetic radiation at 835 MHz changes the morphology and
inhibits proliferation of a human astrocytoma cell line.
Bioelectrochem Bioenerg. 43:13–l8. 1997. View Article : Google Scholar
|
27
|
Bourdoulous S, Orend G, MacKenna DA,
Pasqualini R and Ruoslahti E: Fibronectin matrix regulates
activation of RHO and CDC42 GTPases and cell cycle progression. J
Cell Biol. 143:267–276. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yi M and Ruoslahti E: A fibronectin
fragment inhibits tumor growth, angiogenesis, and metastasis. Proc
Natl Acad Sci USA. 98:620–624. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ramis-Conde I, Chaplain MAJ, Anderson ARA
and Drasdo D: Multi-scale modelling of cancer cell intravasation:
the role of cadherins in metastasis. Phys Biol. 6:0160082009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Mendez MG, Kojima S and Goldman RD:
Vimentin induces changes in cell shape, motility, and adhesion
during the epithelial to mesenchymal transition. FASEB J.
24:1838–1851. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim DS, Lee HK, Park SH, Lee S, Ryoo IJ,
Kim WG, Yoo ID, Na JI, Kwon SB and Park KC: Terrein inhibits
keratinocyte proliferation via ERK inactivation and G2/M cell cycle
arrest. Exp Dermatol. 17:312–317. 2008. View Article : Google Scholar
|
32
|
Heichman KA and Roberts JM: Rules to
replicate by. Cell. 79:557–562. 1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nilsson I and Hoffmann I: Cell cycle
regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res.
4:107–114. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gonzalez VM, Fuertes MA, Alonso C and
Perez JM: Is cisplatin-induced cell death always produced by
apoptosis? Mol Pharmacol. 59:657–663. 2001.PubMed/NCBI
|
35
|
Sherr CJ: Cancer cell cycles. Science.
274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI
|
36
|
Brooks G and La Thangue NB: The cell cycle
and drug discovery: the promise and the hope. Drug Discov Today.
4:455–464. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nurse P: A long twentieth century of the
cell cycle and beyond. Cell. 100:71–78. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mullany LK, White P, Hanse EA, Nelsen CJ,
Goggin MM, Mullany JE, Anttila CK, Greenbaum LE, Kaestner KH and
Albrecht JH: Distinct proliferative and transcriptional effects of
the D-type cyclins in vivo. Cell Cycle. 7:2215–2224. 2008.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lauper N, Beck AR, Cariou S, Richman L,
Hofmann K, Reith W, Slingerland JM and Amati B: Cyclin E2: a novel
CDK2 partner in the late G1 and S phases of the mammalian cell
cycle. Oncogene. 17:2637–2643. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Matsuoka S, Edwards MC, Bai C, Parker S,
Zhang P, Baldini A, Harper JW and Elledge SJ: p57KIP2, a
structurally distinct member of the p21CIP1 Cdk inhibitor family,
is a candidate tumor suppressor gene. Genes Dev. 9:650–662. 1995.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Hannon GJ and Beach D: pl5INK4B is a
potential effector of TGF-beta-induced cell cycle arrest. Nature.
371:257–261. 1994. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kraft C, Herzog F, Gieffers C, Mechtler K,
Hagting A, Pines J and Peters JM: Mitotic regulation of the human
anaphase-promoting complex by phosphorylation. EMBO J.
22:6598–6609. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu F, Rothblum-Oviatt C, Ryan CE and
Piwnica-Worms H: Overproduction of human Myt1 kinase induces a G2
cell cycle delay by interfering with the intracellular trafficking
of Cdc2-cyclin B1 complexes. Mol Cell Biol. 19:5113–5123.
1999.PubMed/NCBI
|
44
|
Cybulski C, Górski B, Huzarski T, Masojć
B, Mierzejewski M, Debniak T, Teodorczyk U, Byrski T, Gronwald J,
Matyjasik J, Złowocka E, Lenner M, Nej K, Castaneda J, Medrek K,
Szymańska A, Szymańska J, Kurzawski G, Suchy J, Oszurek O, Witek A,
Narod SA and Lubinski J: CHEK2 is a multiorgan cancer
susceptibility gene. Am J Hum Genet. 75:1131–1135. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kisielewska J, Lu P and Whitaker M:
GFP-PCNA as an S-phase marker in embryos during the first and
subsequent cell cycles. Biol Cell. 97:221–229. 2005. View Article : Google Scholar
|
46
|
Kumar D, Minocha N, Rajanala K and Saha S:
The distribution pattern of proliferating cell nuclear antigen in
the nuclei of Leishmania donovani. Microbiology. 155:3748–3757.
2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Barton KM and Levine EM: Expression
patterns and cell cycle profiles of PCNA, MCM6, cyclin D1, cyclin
A2, cyclin B1, and phosphorylated histone H3 in the developing
mouse retina. Dev Dynam. 237:672–682. 2008. View Article : Google Scholar
|