1
|
Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM
and Baek KH: The expression patterns of deubiquitinating enzymes,
USP22 and Usp22. Gene Expr Patterns. 6:277–284. 2006. View Article : Google Scholar
|
2
|
Liu Y, Yang Y, Xu H and Dong X:
Implication of USP22 in the regulation of BMI-1, c-Myc, p16INK4a,
p14ARF, and cyclin D2 expression in primary colorectal carcinomas.
Diagn Mol Pathol. 19:194–200. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang DD, Cui BB, Sun LY, et al: The
co-expression of USP22 and BMI-1 may promote cancer progression and
predict therapy failure in gastric carcinoma. Cell Biochem Biophys.
61:703–710. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang Y, Yao L, Zhang X, et al: Elevated
expression of USP22 in correlation with poor prognosis in patients
with invasive breast cancer. J Cancer Res Clin Oncol.
137:1245–1253. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang XY, Varthi M, Sykes SM, et al: The
putative cancer stem cell marker USP22 is a subunit of the human
SAGA complex required for activated transcription and cell-cycle
progression. Mol Cell. 29:102–111. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao Y, Lang G, Ito S, et al: A TFTC/STAGA
module mediates histone H2A and H2B deubiquitination, coactivates
nuclear receptors, and counteracts heterochromatin silencing. Mol
Cell. 29:92–101. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Atanassov BS, Evrard YA, Multani AS, et
al: Gcn5 and SAGA regulate shelterin protein turnover and telomere
maintenance. Mol Cell. 35:352–364. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lin Z, Yang H, Kong Q, et al: USP22
antagonizes p53 transcriptional activation by deubiquitinating
Sirt1 to suppress cell apoptosis and is required for mouse
embryonic development. Mol Cell. 46:484–494. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Atanassov BS and Dent SY: USP22 regulates
cell proliferation by deubiquitinating the transcriptional
regulator FBP1. EMBO Rep. 12:924–930. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sussman RT, Stanek TJ, Esteso P, Gearhart
JD, Knudsen KE and McMahon SB: The epigenetic modifier
ubiquitin-specific protease 22 (USP22) regulates embryonic stem
cell differentiation via transcriptional repression of
sex-determining region Y-box 2 (SOX2). J Biol Chem.
288:24234–24246. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xiong J, Che X, Li X, Yu H, Gong Z and Li
W: Cloning and characterization of the human USP22 gene promoter.
PLoS One. 7:e527162012. View Article : Google Scholar
|
12
|
Bubis M and Zisapel N: Modulation by
melatonin of protein secretion from melanoma cells: is cAMP
involved? Mol Cell Endocrinol. 112:169–175. 1995. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nakamura K, Bossy-Wetzel E, Burns K, et
al: Changes in endoplasmic reticulum luminal environment affect
cell sensitivity to apoptosis. J Cell Biol. 150:731–740. 2000.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zong Y, Sun L, Liu B, et al: Resveratrol
inhibits LPS-induced MAPK activation via activation of the
phosphatidylinositol 3-kinase pathway in murine RAW 264.7
macrophage cells. PLoS One. 7:e441072012. View Article : Google Scholar
|
15
|
Glinsky GV: Death-from-cancer signatures
and stem cell contribution to metastatic cancer. Cell Cycle.
4:1171–1175. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Glinsky GV: Genomic models of metastatic
cancer: functional analysis of death-from-cancer signature genes
reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype
with altered cell cycle control and activated Polycomb Group (PcG)
protein chromatin silencing pathway. Cell Cycle. 5:1208–1216. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tinti C, Yang C, Seo H, et al:
Structure/function relationship of the cAMP response element in
tyrosine hydroxylase gene transcription. J Biol Chem.
272:19158–19164. 1997. View Article : Google Scholar : PubMed/NCBI
|
18
|
Euskirchen G and Snyder M: A plethora of
sites. Nat Genet. 36:325–326. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
White PC, Shore AM, Clement M, et al:
Regulation of cyclin D2 and the cyclin D2 promoter by protein
kinase A and CREB in lymphocytes. Oncogene. 25:2170–2180. 2006.
View Article : Google Scholar
|
20
|
Wilson BE, Mochon E and Boxer LM:
Induction of bcl-2 expression by phosphorylated CREB proteins
during B-cell activation and rescue from apoptosis. Mol Cell Biol.
16:5546–5556. 1996.PubMed/NCBI
|
21
|
Mayer SI, Willars GB, Nishida E and Thiel
G: Elk-1, CREB, and MKP-1 regulate Egr-1 expression in
gonadotropin-releasing hormone stimulated gonadotrophs. J Cell
Biochem. 105:1267–1278. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sakamoto KM and Frank DA: CREB in the
pathophysiology of cancer: implications for targeting transcription
factors for cancer therapy. Clin Cancer Res. 15:2583–2587. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Melnikova VO, Dobroff AS, Zigler M, et al:
CREB inhibits AP-2alpha expression to regulate the malignant
phenotype of melanoma. PLoS One. 5:e124522010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Quinn PG: Distinct activation domains
within cAMP response element-binding protein (CREB) mediate basal
and cAMP-stimulated transcription. J Biol Chem. 268:16999–17009.
1993.PubMed/NCBI
|
25
|
Rosenberg D, Groussin L, Jullian E,
Perlemoine K, Bertagna X and Bertherat J: Role of the PKA-regulated
transcription factor CREB in development and tumorigenesis of
endocrine tissues. Ann NY Acad Sci. 968:65–74. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guo Y and Feng P: OX2R activation induces
PKC-mediated ERK and CREB phosphorylation. Exp Cell Res.
318:2004–2013. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Takeda H, Kitaoka Y, Hayashi Y, et al:
Calcium/calmodulin-dependent protein kinase II regulates the
phosphorylation of CREB in NMDA-induced retinal neurotoxicity.
Brain Res. 1184:306–315. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gibellini D, Bassini A, Pierpaoli S, et
al: Extracellular HIV-1 Tat protein induces the rapid Ser133
phosphorylation and activation of CREB transcription factor in both
Jurkat lymphoblastoid T cells and primary peripheral blood
mononuclear cells. J Immunol. 160:3891–3898. 1998.PubMed/NCBI
|
29
|
Delghandi MP, Johannessen M and Moens U:
The cAMP signalling pathway activates CREB through PKA, p38 and
MSK1 in NIH 3T3 cells. Cell Signal. 17:1343–1351. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Atlas E, Stramwasser M and Mueller CR: A
CREB site in the BRCA1 proximal promoter acts as a constitutive
transcriptional element. Oncogene. 20:7110–7114. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Conkright MD, Guzman E, Flechner L, Su AI,
Hogenesch JB and Montminy M: Genome-wide analysis of CREB target
genes reveals a core promoter requirement for cAMP responsiveness.
Mol Cell. 11:1101–1108. 2003. View Article : Google Scholar : PubMed/NCBI
|