1
|
Dorantes-Acosta E and Pelayo R: Lineage
switching in acute leukemias: A consequence of stem cell
plasticity? Bone Marrow. pp. 4067962012, http://dx.doi.org/10.1155/2012/406796.
|
2
|
Daniel-Cravioto A, Gonzalez-Bonilla CR,
Mejia-Arangure JM, Perez-Saldivar ML, Fajardo-Gutierrez A,
Jimenez-Hernandez E, Hernandez-Serrano M and Bekker-Mendez VC:
Genetic rearrangement MLL/AF4 is most frequent in children with
acute lymphoblastic leukemias in Mexico City. Leuk Lymphoma.
50:1352–1360. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pérez-Saldivar ML, Fajardo-Gutiérrez A,
Bernáldez-Ríos R, et al: Childhood acute leukemias are frequent in
Mexico City: descriptive epidemiology. BMC Cancer. 11:3552011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Calin GA, Ferracin M, Cimmino A, et al: A
MicroRNA signature associated with prognosis and progression in
chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Garzon R, Volinia S, Liu CG, et al:
MicroRNA signatures associated with cytogenetics and prognosis in
acute myeloid leukemia. Blood. 111:3183–3189. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jongen-Lavrencic M, Sun SM, Dijkstra MK,
Valk PJ and Löwenberg B: MicroRNA expression profiling in relation
to the genetic heterogeneity of acute myeloid leukemia. Blood.
111:5078–5085. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Georgantas RW III, Hildreth R, Morisot S,
Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM and Civin CI:
CD34+ hematopoietic stem-progenitor cell microRNA
expression and function: a circuit diagram of differentiation
control. Proc Natl Acad Sci USA. 104:2750–2755. 2007. View Article : Google Scholar
|
10
|
Xiao C, Calado DP, Galler G, Thai TH,
Patterson HC, Wang J, Rajewsky N, Bender TP and Rajewsky K: miR-150
controls B cell differentiation by targeting the transcription
factor c-Myb. Cell. 131:146–159. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ben-Ami O, Pencovich N, Lotem J, Levanon D
and Groner Y: A regulatory interplay between miR-27a and Runx1
during mega-karyopoiesis. Proc Natl Acad Sci USA. 106:238–243.
2009. View Article : Google Scholar
|
12
|
Wang Q, Huang Z, Xue H, Jin C, Ju XL, Han
JD and Chen YG: MicroRNA miR-24 inhibits erythropoiesis by
targeting activin type I receptor ALK4. Blood. 111:588–595. 2008.
View Article : Google Scholar
|
13
|
Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J
and Jin Y: miR-24 regulates apoptosis by targeting the open reading
frame (ORF) region of FAF1 in cancer cells. PLoS One. 5:e94292010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Cheng AM, Byrom MW, Shelton J and Ford LP:
Antisense inhibition of human miRNAs and indications for an
involvement of miRNA in cell growth and apoptosis. Nucleic Acids
Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lal A, Navarro F, Maher CA, et al: miR-24
inhibits cell proliferation by targeting E2F2, MYC, and other
cell-cycle genes via binding to ‘seedless’ 3′UTR microRNA
recognition elements. Mol Cell. 35:610–625. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nguyen T, Rich A and Dahl R: miR-24
promotes the survival of hematopoietic cells. PLoS One.
8:e554062013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gómez-Gómez Y, Organista-Nava J,
Saavedra-Herrera MV, Rivera-Ramírez AB, Terán-Porcayo MA, Del
Carmen Alarcón-Romero L, Illades-Aguiar B and Leyva-Vázquez MA:
Survival and risk of relapse of acute lymphoblastic leukemia in a
Mexican population is affected by dihydrofolate reductase gene
polymorphisms. Exp Ther Med. 3:665–672. 2012.PubMed/NCBI
|
18
|
Seguro-popular: Secretaria de Salud/Seguro
Popular A. 2007, Available at: http://seguropopular.col.gob.mx/segpop/.
Accessed May, 2009
|
19
|
Reiter A, Schrappe M, Ludwig WD, et al:
Chemotherapy in 998 unselected childhood acute lymphoblastic
leukemia patients. Results and conclusions of the multicenter trial
ALL-BFM 86. Blood. 84:3122–3133. 1994.PubMed/NCBI
|
20
|
Smith M, Arthur D, Camitta B, et al:
Uniform approach to risk classification and treatment assignment
for children with acute lymphoblastic leukemia. J Clin Oncol.
14:18–24. 1996.PubMed/NCBI
|
21
|
Chomczynski P and Sacchi N: Single-step
method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction. Anal Biochem.
162:156–159. 1987. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shtivelman E, Lifshitz B, Gale RP and
Canaani E: Fused transcript of abl and bcr genes in chronic
myelogenous leukaemia. Nature. 315:550–554. 1985. View Article : Google Scholar : PubMed/NCBI
|
23
|
van der Feltz MJ, Shivji MK, Allen PB,
Heisterkamp N, Groffen J and Wiedemann LM: Nucleotide sequence of
both reciprocal translocation junction regions in a patient with Ph
positive acute lymphoblastic leukaemia, with a breakpoint within
the first intron of the BCR gene. Nucleic Acids Res. 17:1–10. 1989.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kozu T, Miyoshi H, Shimizu K, Maseki N,
Kaneko Y, Asou H, Kamada N and Ohki M: Junctions of the
AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid
leukemia detected by reverse transcription polymerase chain
reaction. Blood. 82:1270–1276. 1993.PubMed/NCBI
|
25
|
Harbott J, Viehmann S, Borkhardt A, Henze
G and Lampert F: Incidence of TEL/AML1 fusion gene analyzed
consecutively in children with acute lymphoblastic leukemia in
relapse. Blood. 90:4933–4937. 1997.
|
26
|
Claxton DF, Liu P, Hsu HB, Marlton P,
Hester J, Collins F, Deisseroth AB, Rowley JD and Siciliano MJ:
Detection of fusion transcripts generated by the inversion 16
chromosome in acute myelogenous leukemia. Blood. 83:1750–1756.
1994.PubMed/NCBI
|
27
|
Dulucq S, St-Onge G, Gagné V, Ansari M,
Sinnett D, Labuda D, Moghrabi A and Krajinovic M: DNA variants in
the dihydrofolate reductase gene and outcome in childhood ALL.
Blood. 111:3692–3700. 2008. View Article : Google Scholar
|
28
|
Mi S, Lu J, Sun M, et al: MicroRNA
expression signatures accurately discriminate acute lymphoblastic
leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA.
104:19971–19976. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Daschkey S, Röttgers S, Giri A, Bradtke J,
Teigler-Schlegel A, Meister G, Borkhardt A and Landgraf P:
MicroRNAs distinguish cytogenetic subgroups in pediatric AML and
contribute to complex regulatory networks in AML-relevant pathways.
PLoS One. 8:e563342013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zaidi SK, Dowdy CR, van Wijnen AJ, Lian
JB, Raza A, Stein JL, Croce CM and Stein GS: Altered Runx1
subnuclear targeting enhances myeloid cell proliferation and blocks
differentiation by activating a miR-24/MKP-7/MAPK network. Cancer
Res. 69:8249–8255. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Organista-Nava J, Gómez-Gómez Y,
Saavedra-Herrera MV, Rivera-Ramírez AB, Terán-Porcayo MA,
Alarcón-Romero LC, Illades-Aguiar B and Leyva-Vázquez MA:
Polymorphisms of the γ-glutamyl hydrolase gene and risk of relapse
to acute lymphoblastic leukemia in Mexico. Leuk Res. 34:728–732.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ng SM, Lin HP, Ariffin WA, Zainab AK, Lam
SK and Chan LL: Age, sex, haemoglobin level, and white cell count
at diagnosis are important prognostic factors in children with
acute lymphoblastic leukemia treated with BFM-type protocol. J Trop
Pediatr. 46:338–343. 2000. View Article : Google Scholar
|
33
|
Leyva-Vázquez MA, Organista-Nava J,
Gómez-Gómez Y, Contreras-Quiroz A, Flores-Alfaro E and
Illades-Aguiar B: Polymorphism G80A in the reduced folate carrier
gene and its relationship to survival and risk of relapse in acute
lymphoblastic leukemia. J Investig Med. 60:1064–1067.
2012.PubMed/NCBI
|