Ubiquilin 2 enhances osteosarcoma progression through resistance to hypoxic stress

  • Authors:
    • Shinji Tsukamoto
    • Keiji Shimada
    • Kanya Honoki
    • Akira Kido
    • Manabu Akahane
    • Yasuhito Tanaka
    • Noboru Konishi
  • View Affiliations

  • Published online on: February 9, 2015     https://doi.org/10.3892/or.2015.3788
  • Pages: 1799-1806
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Ubiquilin 2 (UBQLN2), a member of the ubiquitin-like protein family (ubiquilins), maintains protein homeostasis. Although UBQLN2 has been implicated in the pathogenesis of neurodegenerative diseases, it is also associated with mali­gnant tumors. Therefore, we examined whether UBQLN2 plays a role in human osteosarcoma. The human osteosarcoma cell line MG63 was transfected with UBQLN2 siRNA and cultured under hypoxic conditions. The rat osteosarcoma cell line COS1NR was inoculated into Fischer 344 rats, followed by injection of UBQLN2 siRNA with atelocollagen. An immunohistochemical analysis of UBQLN2 was performed using 34 cases of human high-grade osteosarcomas, and metastasis-free survival was estimated by the Kaplan-Meier method. Silencing of UBQLN2 by siRNA transfection under hypoxia led to activation of JNK and p38, resulting in induction of apoptosis in the osteosarcoma cell line MG63. Injection of UBQLN2 siRNA suppressed tumor growth in the rat osteosarcoma model, followed by apoptosis induction. The immunohistochemical examination revealed that high UBQLN2 expression was significantly associated with the unfavorable metastasis-free survival of osteosarcoma patients. UBQLN2 plays an important role in resistance to hypoxic stress and enhances tumor progression in osteosarcoma. UBQLN2 may be a new molecular target for chemotherapeutics and a useful clinicopathological marker in human osteosarcoma.
View Figures
View References

Related Articles

Journal Cover

April-2015
Volume 33 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Tsukamoto S, Shimada K, Honoki K, Kido A, Akahane M, Tanaka Y and Konishi N: Ubiquilin 2 enhances osteosarcoma progression through resistance to hypoxic stress. Oncol Rep 33: 1799-1806, 2015.
APA
Tsukamoto, S., Shimada, K., Honoki, K., Kido, A., Akahane, M., Tanaka, Y., & Konishi, N. (2015). Ubiquilin 2 enhances osteosarcoma progression through resistance to hypoxic stress. Oncology Reports, 33, 1799-1806. https://doi.org/10.3892/or.2015.3788
MLA
Tsukamoto, S., Shimada, K., Honoki, K., Kido, A., Akahane, M., Tanaka, Y., Konishi, N."Ubiquilin 2 enhances osteosarcoma progression through resistance to hypoxic stress". Oncology Reports 33.4 (2015): 1799-1806.
Chicago
Tsukamoto, S., Shimada, K., Honoki, K., Kido, A., Akahane, M., Tanaka, Y., Konishi, N."Ubiquilin 2 enhances osteosarcoma progression through resistance to hypoxic stress". Oncology Reports 33, no. 4 (2015): 1799-1806. https://doi.org/10.3892/or.2015.3788