1
|
Mrózek K, Heerema NA and Bloomfield CD:
Cytogenetics in acute leukesmia. Blood Rev. 18:115–136. 2004.
View Article : Google Scholar
|
2
|
Burnett A, Wetzler M and Löwenberg B:
Therapeutic advances in acute myeloid leukemia. J Clin Oncol.
29:487–494. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Marcucci G, Haferlach T and Döhner H:
Molecular genetics of adult acute myeloid leukemia: Prognostic and
therapeutic Implications. J Clin Oncol. 29:475–486. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Byrd JC, Mrózek K, Dodge RK, et al:
Pretreatment cytogenetic abnormalities are predictive of induction
success, cumulative incidence of relapse, and overall survival in
adult patients with de novo acute myeloid leukemia: results from
Cancer and Leukemia Group B (CALGB 8461). Blood. 100:4325–4336.
2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Walker A and Marcucci G: Molecular
prognostic factors in cytogenetically normal acute myeloid
leukemia. Expert Rev Hematol. 5:547–558. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Z, Lu J, Sun M, et al: Distinct
microRNA expression profiles in acute myeloid leukemia with common
translocations. Proc Natl Acad Sci USA. 105:15535–15540. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou X and Wang X: Klotho: a novel
biomarker for cancer. J Cancer Res Clin Oncol. Aug 3–2014.Epub
ahead of print. View Article : Google Scholar
|
9
|
Kuro-o M: Klotho as a regulator of
oxidative stress and senescence. Biol Chem. 389:233–241. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hu MC, Shiizaki K, Kuro-o M and Moe OW:
Fibroblast growth factor 23 and Klotho: physiology and
pathophysiology of an endocrine network of mineral metabolism. Annu
Rev Physiol. 75:503–533. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang Y, Chen L, Huang G, et al: Klotho
sensitizes human lung cancer cell line to cisplatin via PI3k/Akt
pathway. PLoS One. 8:e573912013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu F, Wu S, Ren H and Gu J: Klotho
suppresses RIG-I-mediated senescence-associated inflammation. Nat
Cell Biol. 13:254–262. 2011. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Baldus CD, Tanner SM, Ruppert AS, et al:
BAALC expression predicts clinical outcome of de novo acute myeloid
leukemia patients with normal cytogenetics: a Cancer and Leukemia
Group B Study. Blood. 102:1613–1618. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fukao T, Fukuda Y, Kiga K, et al: An
evolutionarily conserved mechanism for microRNA-223 expression
revealed by microRNA gene profiling. Cell. 129:617–631. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Shibayama Y, Iwashita Y, Yoshikawa Y, et
al: Effect of 5-fluoro-uracil treatment on SN-38 absorption from
intestine in rats. Biol Pharm Bull. 34:1418–1425. 2011. View Article : Google Scholar
|
16
|
Zhang J, Du YY, Lin YF, Chen YT, Yang L,
Wang HJ and Ma D: The cell growth suppressor, miR-126, targets
IRS-1. Biochem Biophys Res Commun. 377:136–140. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ebrahimi F, Gopalan V, Smith RA and Lam
AK: miR-126 in human cancers: Clinical roles and current
perspectives. Exp Mol Pathol. 96:98–107. 2004. View Article : Google Scholar
|
18
|
Shen WF, Hu YL, Uttarwar L, Passegue E and
Largman C: MicroRNA-126 regulates HOXA9 by binding to the homeobox.
Mol Cell Biol. 28:4609–4619. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cammarata G, Augugliaro L, Salemi D, et
al: Differential expression of specific microRNA and their targets
in acute myeloid leukemia. Am J Hematol. 85:331–339.
2010.PubMed/NCBI
|
20
|
Schober A, Nazari-Jahantigh M, Wei Y, et
al: 2014. MicroRNA-126-5p promotes endothelial proliferation and
limits atherosclerosis by suppressing Dlk1. Nat Med. 20:368–376.
2014. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Wu Z, Yin H, Liu T, et al: MiR-126-5p
regulates osteoclast differentiation and bone resorption in giant
cell tumor through inhibition of MMP-13. Biochem Biophys Res
Commun. 443:944–949. 2014. View Article : Google Scholar
|
22
|
Zhou W, Yin H, Wang T, et al: MiR-126-5p
regulates osteolysis formation and stromal cell proliferation in
giant cell tumor through inhibition of PTHrP. Bone. 66:267–276.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Felli N, Felicetti F, Lustri AM, et al:
miR-126&126* restored expressions play a tumor suppressor role
by directly regulating ADAM9 and MMP7 in melanoma. PLoS One.
8:e568242013. View Article : Google Scholar
|
24
|
Betel D, Wilson M, Gabow A, Marks DS and
Sander C: 2008. The microRNA.org resource: targets and expression.
Nucleic Acids Res. 36:D149–D153. 2008. View Article : Google Scholar
|
25
|
Wolf I, Levanon-Cohen S, Bose S, et al:
Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF
pathways in human breast cancer. Oncogene. 27:7094–7105. 2008.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Abramovitz L, Rubinek T, Ligumsky H, Bose
S, Barshack I, Avivi C, Kaufman B and Wolf I: KL1 internal repeat
mediates klotho tumor suppressor activities and inhibits bFGF and
IGF-I signaling in pancreatic cancer. Clin Cancer Res.
17:4254–4266. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen B, Wang X, Zhao W and Wu J: Klotho
inhibits growth and promotes apoptosis in human lung cancer cell
line A549. J Exp Clin Cancer Res. 29:992010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Poh TW and Pervaiz S: LY294002 and
LY303511 sensitize tumor cells to drug-induced apoptosis via
intracellular hydrogen peroxide production independent of the
phosphoinositide 3-kinase-Akt pathway. Cancer Res. 65:6264–6274.
2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hayakawa J, Ohmichi M, Kurachi H, et al:
Inhibition of BAD phosphorylation either at serine 112 via
extracellular signal-regulated protein kinase cascade or at serine
136 via Akt cascade sensitizes human ovarian cancer cells to
cisplatin. Cancer Res. 60:5988–5994. 2000.PubMed/NCBI
|
30
|
Shibata T, Kokubu A, Tsuta K and Hirohashi
S: Oncogenic mutation of PIK3CA in small cell lung carcinoma: A
potential therapeutic target pathway for chemotherapy-resistant
lung cancer. Cancer Lett. 283:203–211. 2009. View Article : Google Scholar : PubMed/NCBI
|