1
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Han S, Zhang S, Chen W and Li C: Analysis
of the status and trends of bladder cancer incidence in China.
Oncol Prog. 11:89–95. 2013.In Chinese.
|
3
|
Babjuk M, Burger M, Zigeuner R, Shariat
SF, van Rhijn BW, Compérat E, Sylvester RJ, Kaasinen E, Böhle A,
Palou Redorta J, et al: EAU guidelines on non-muscle-invasive
urothelial carcinoma of the bladder: update 2013. Eur Urol.
64:639–653. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gakis G, Witjes JA, Compérat E, Cowan NC,
De Santis M, Lebret T, Ribal MJ and Sherif AM; European Association
of Urology: EAU guidelines on primary urethral carcinoma. Eur Urol.
64:823–830. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Na Y and Guo Z: Practice of Urology.
People’s Medical Press; Beijing: pp. 280–296. 2009, In Chinese.
|
6
|
Wu X: Urothelial tumorigenesis: a tale of
divergent pathways. Nat Rev Cancer. 5:713–725. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Efstathiou JA, Spiegel DY, Shipley WU,
Heney NM, Kaufman DS, Niemierko A, Coen JJ, Skowronski RY, Paly JJ,
McGovern FJ, et al: Long-term outcomes of selective bladder
preservation by combined-modality therapy for invasive bladder
cancer: the MGH experience. Eur Urol. 61:705–711. 2012. View Article : Google Scholar
|
8
|
Wedeen CJ and Weisblat DA: Segmental
expression of an engrailed-class gene during early development and
neurogenesis in an annelid. Development. 113:805–814.
1991.PubMed/NCBI
|
9
|
Wanninger A and Haszprunar G: The
expression of an engrailed protein during embryonic shell formation
of the tusk-shell, Antalis entails (Mollusca, Scaphopoda). Evol
Dev. 3:312–231. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fjose A, McGinnis WJ and Gehring WJ:
Isolation of a homoeo box-containing gene from the engrailed region
of Drosophila and the spatial distribution of its transcripts.
Nature. 313:284–289. 1985. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Holland LZ, Kene M, Williams NA and
Holland ND: Sequence and embryonic expression of the amphioxus
engrailed gene (AmphiEn): the metameric pattern of transcription
resembles that of its segment-polarity homolog in Drosophila.
Development. 124:1723–1732. 1997.PubMed/NCBI
|
12
|
Joyner AL, Kornberg T, Coleman KG, Cox DR
and Martin GR: Expression during embryogenesis of a mouse gene with
sequence homology to the Drosophila engrailed gene. Cell. 43:29–37.
1985. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hanks M, Wurst W, Anson-Cartwright L,
Auerbach AB and Joyner AL: Rescue of the En-1 mutant phenotype by
replacement of En-1 with En-2. Science. 269:679–682. 1995.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hanks MC, Loomis CA, Harris E, Tong CX,
Anson-Cartwright L, Auerbach A and Joyner A: Drosophila engrailed
can substitute for mouse Engrailed1 function in mid-hindbrain, but
not limb development. Development. 125:4521–4530. 1998.PubMed/NCBI
|
15
|
Simon HH, Saueressig H, Wurst W, Goulding
MD and O’Leary DD: Fate of midbrain dopaminergic neurons controlled
by the engrailed genes. J Neurosci. 21:3126–3134. 2001.PubMed/NCBI
|
16
|
Alberi L, Sgado P and Simon HH: Engrailed
genes are cell autonomously required to prevent apoptosis in
mesencephalic dopaminergic neurons. Development. 131:3229–3236.
2004. View Article : Google Scholar
|
17
|
Degenhardt K, Rentschler S, Fishman G and
Sassoon DA: Cellular and cis-regulation of En-2 expression in the
mandibular arch. Mech Dev. 111:125–136. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martin NL, Saba-El-Leil MK, Sadekova S,
Meloche S and Sauvageau G: EN2 is a candidate oncogene in human
breast cancer. Oncogene. 24:6890–6901. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bose SK, Bullard RS and Donald CD:
Oncogenic role of engrailed-2 (en-2) in prostate cancer cell growth
and survival. Transl Oncogenomics. 3:37–43. 2008.PubMed/NCBI
|
20
|
Morgan R, Boxall A, Bhatt A, et al:
Engrailed-2 (EN2): a tumor specific urinary biomarker for the early
diagnosis of prostate cancer. Clin Cancer Res. 17:1090–1098. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Pandha H, Sorensen KD, Orntoft TF, Langley
S, Hoyer S, Borre M and Morgan R: Urinary engrailed-2 (EN2) levels
predict tumour volume in men undergoing radical prostatectomy for
prostate cancer. BJU Int. 110:E287–E292. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
McGrath SE, Michael A, Pandha H and Morgan
R: Engrailed homeobox transcription factors as potential markers
and targets in cancer. FEBS Lett. 587:549–554. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Morgan R, Bryan RT, Javed S, Launchbury F,
Zeegers MP, Cheng KK, James ND, Wallace DM, Hurst CD, Ward DG, et
al: Expression of Engrailed-2 (EN2) protein in bladder cancer and
its potential utility as a urinary diagnostic biomarker. Eur J
Cancer. 49:2214–2222. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Cantley LC: The phosphoinositide 3-kinase
pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Luo J, Manning BD and Cantley LC:
Targeting the PI3K-Akt pathway in human cancer: rationale and
premise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shaw RJ and Cantley LC: Ras, PI(3)K and
mTOR signalling controls tumour cell growth. Nature. 441:424–430.
2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Peter M and Herskowitz I: Joining the
complex: cyclin-dependent kinase inhibitory proteins and the cell
cycle. Cell. 79:181–184. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Al Hussain TO and Akhtar M: Molecular
basis of urinary bladder cancer. Adv Anat Pathol. 20:53–60. 2013.
View Article : Google Scholar
|
30
|
Cordes I, Kluth M, Zygis D, Rink M, Chun
F, Eichelberg C, Dahlem R, Fisch M, Höppner W, Wagner W, et al:
PTEN deletions are related to disease progression and unfavourable
prognosis in early bladder cancer. Histopathology. 63:670–677.
2013.PubMed/NCBI
|
31
|
Adams JM and Cory S: The Bcl-2 apoptotic
switch in cancer development and therapy. Oncogene. 26:1324–1337.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Haupt S, Berger M, Goldberg Z and Haupt Y:
Apoptosis - the p53 network. J Cell Sci. 116:4077–4085. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Maehama T and Dixon JE: The tumor
suppressor, PTEN/MMAC1, dephosphorylates the lipid second
messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem.
273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nicholson KM and Anderson NG: The protein
kinase B/Akt signaling pathway in human malignancy. Cell Signal.
14:381–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Diehl JA: Cycling to cancer with cyclin
D1. Cancer Biol Ther. 1:226–231. 2002. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Kopparapu PK, Boorjian SA, Robinson BD,
Downes M, Gudas LJ, Mongan NP and Persson JL: Expression of cyclin
d1 and its association with disease characteristics in bladder
cancer. Anticancer Res. 33:5235–5242. 2013.PubMed/NCBI
|
37
|
Fang Y, Cao Z, Hou Q, Ma C, Yao C, Li J,
Wu XR and Huang C: Cyclin d1 downregulation contributes to
anticancer effect of isorhapontigenin on human bladder cancer
cells. Mol Cancer Ther. 12:1492–1503. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gee JR, Burmeister CB, Havighurst TC and
Kim K: Cyclinmediated G1 arrest by celecoxib differs in low-versus
high-grade bladder cancer. Anticancer Res. 29:3769–3775.
2009.PubMed/NCBI
|
39
|
Appelmann L, Liersch R, Kessler T, Mesters
RM and Berdel WE: Angiogenesis inhibition in cancer therapy:
platelet-derived growth factor (PDGF) and vascular endothelial
growth factor (VEGF) and their receptors: biological functions and
role in malignancy. Recent Results Cancer Res. 180:51–81. 2010.
View Article : Google Scholar
|
40
|
Moh MC and Shen S: The roles of cell
adhesion molecules in tumor suppression and cell migration: a new
paradox. Cell Adh Migr. 3:334–336. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rodriguez Faba O, Palou-Redorta J,
Fernández-Gómez JM, Algaba F, Eiró N, Villavicencio H and Vizoso
FJ: Matrix metalloproteinases and bladder cancer: what is new? ISRN
Urol. 2012:5815392012.PubMed/NCBI
|
42
|
Yuan TL and Cantley LC: PI3K pathway
alterations in cancer: variations on a theme. Oncogene.
27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Courtney KD, Corcoran RB and Engelman JA:
The PI3K pathway as drug target in human cancer. J Clin Oncol.
28:1075–1083. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
López-Knowles E, Hernández S, Malats N,
Kogevinas M, Lloreta J, Carrato A, Tardón A, Serra C and Real FX:
PIK3CA mutations are an early genetic alteration associated with
FGFR3 mutations in superficial papillary bladder tumors. Cancer
Res. 66:7401–7404. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Platt FM, Hurst CD, Taylor CF, Gregory WM,
Harnden P and Knowles MA: Spectrum of phosphatidylinositol 3-kinase
pathway gene alterations in bladder cancer. Clin Cancer Res.
15:6008–6017. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Knowles MA, Platt FM, Ross RL and Hurst
CD: Phosphatidylinositol 3-kinase (PI3K) pathway activation in
bladder cancer. Cancer Metastasis Rev. 28:305–316. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Askham JM, Platt F, Chambers PA, Snowden
H, Taylor CF and Knowles MA: AKT1 mutations in bladder cancer:
identification of a novel oncogenic mutation that can co-operate
with E17K. Oncogene. 29:150–155. 2010. View Article : Google Scholar
|
48
|
Calderaro J, Rebouissou S, de Koning L,
Masmoudi A, Hérault A, Dubois T, Maille P, Soyeux P, Sibony M and
de la Taille A: PI3K/AKT pathway activation in bladder
carcinogenesis. Int J Cancer. 134:1776–1784. 2014. View Article : Google Scholar
|
49
|
Cully M, You H, Levine AJ and Mak TW:
Beyond PTEN mutations: the PI3K pathway as an integrator of
multiple inputs during tumorigenesis. Nat Rev Cancer. 6:184–192.
2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Nedelec S, Foucher I, Brunet I, Bouillot
C, Prochiantz A and Trembleau A: Emx2 homeodomain transcription
factor interacts with eukaryotic translation initiation factor 4E
(eIF4E) in the axons of olfactory sensory neurons. Proc Natl Acad
Sci USA. 101:10815–10820. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhou J, Qin L, Tien JC, Gao L, Chen X,
Wang F, Hsieh JT and Xu J: Nkx3.1 functions as para-transcription
factor to regulate gene expression and cell proliferation in
non-cell autonomous manner. J Biol Chem. 287:17248–17256. 2012.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Prin F, Serpente P, Itasaki N and Gould
AP: Hox proteins drive cell segregation and non-autonomous apical
remodelling during hindbrain segmentation. Development.
141:1492–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|