1
|
Lunde ML, Roman E, Warnakulasuriya S,
Mehrotra R, Laranne J, Vasstrand EN and Ibrahim SO: Profiling of
chromosomal changes in potentially malignant and malignant oral
mucosal lesions from South and South-East Asia using
array-comparative genomic hybridization. Cancer Genomics
Proteomics. 11:127–140. 2014.PubMed/NCBI
|
2
|
Hosthor SS, Mahesh P, Priya SA, Sharada P,
Jyotsna M and Chitra S: Quantitative analysis of serum levels of
trace elements in patients with oral submucous fibrosis and oral
squamous cell carcinoma: A randomized cross-sectional study. J Oral
Maxillofac Pathol. 18:46–51. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mohammed F, Manohar V, Jose M, Fairozekhan
Thapasum A, Mohamed S, Halima Shamaz B and D’Souza N: Estimation of
copper in saliva and areca nut products and its correlation with
histological grades of oral submucous fibrosis. J Oral Pathol Med.
44:208–213. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou ZS, Li M, Gao F, Peng JY, Xiao HB,
Dai LX, Lin SR, Zhang R and Jin LY: Arecoline suppresses HaCaT cell
proliferation through cell cycle regulatory molecules. Oncol Rep.
29:2438–2444. 2013.PubMed/NCBI
|
5
|
Wang TN, Huang MS, Lin MC, Duh TH, Lee CH,
Wang CC, Chen PH, Chiang SL, Sheu CC, Chen VC, et al: Betel chewing
and arecoline affects eotaxin-1, asthma and lung function. PLoS
One. 9:e918892014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chang YC, Tsai CH, Lai YL, Yu CC, Chi WY,
Li JJ and Chang WW: Arecoline-induced myofibroblast
transdifferentiation from human buccal mucosal fibroblasts is
mediated by ZEB1. J Cell Mol Med. 18:698–708. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tsai CH, Yang SF, Chen YJ, Chu SC, Hsieh
YS and Chang YC: Regulation of interleukin-6 expression by
arecoline in human buccal mucosal fibroblasts is related to
intracellular glutathione levels. Oral Dis. 10:360–364. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yanjia H and Xinchun J: The role of
epithelial-mesenchymal transition in oral squamous cell carcinoma
and oral submucous fibrosis. Clin Chim Acta. 383:51–56. 2007.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Chang YC, Tsai CH, Tai KW, Yang SH, Chou
MY and Lii CK: Elevated vimentin expression in buccal mucosal
fibroblasts by arecoline in vitro as a possible pathogenesis for
oral submucous fibrosis. Oral Oncol. 38:425–430. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Das RK, Anura A, Pal M, Bag S, Majumdar S,
Barui A, Chakraborty C, Ray AK, Sengupta S, Paul RR, et al:
Epitheliomesenchymal transitional attributes in oral sub-mucous
fibrosis. Exp Mol Pathol. 95:259–269. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu B, Chen J and Jian X: Changes of miRNA
after oral submucous fibrosis co-cultured with Salvia and low-dose
prednisolone. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 39:471–476.
2014.In Chinese. PubMed/NCBI
|
12
|
Ford CE, Jary E, Ma SS, Nixdorf S,
Heinzelmann-Schwarz VA and Ward RL: The Wnt gatekeeper SFRP4
modulates EMT, cell migration and downstream Wnt signalling in
serous ovarian cancer cells. PLoS One. 8:e543622013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin CI, Merley A, Sciuto TE, Li D, Dvorak
AM, Melero-Martin JM, Dvorak HF and Jaminet SC: TM4SF1: A new
vascular therapeutic target in cancer. Angiogenesis. 17:897–907.
2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kong X, Xu X, Yan Y, Guo F, Li J, Hu Y,
Zhou H and Xun Q: Estrogen regulates the tumour suppressor
MiRNA-30c and its target gene, MTA-1, in endometrial cancer. PLoS
One. 9:e908102014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rodríguez-González FG, Sieuwerts AM, Smid
M, Look MP, Meijer-van Gelder ME, de Weerd V, Sleijfer S, Martens
JW and Foekens JA: MicroRNA-30c expression level is an independent
predictor of clinical benefit of endocrine therapy in advanced
estrogen receptor positive breast cancer. Breast Cancer Res Treat.
127:43–51. 2011. View Article : Google Scholar
|
16
|
Chen X, Yan Q, Li S, Zhou L, Yang H, Yang
Y, Liu X and Wan X: Expression of the tumor suppressor miR-206 is
associated with cellular proliferative inhibition and impairs
invasion in ERα-positive endometrioid adenocarcinoma. Cancer Lett.
314:41–53. 2012. View Article : Google Scholar
|
17
|
McKenna DJ, McDade SS, Patel D and McCance
DJ: MicroRNA 203 expression in keratinocytes is dependent on
regulation of p53 levels by E6. J Virol. 84:10644–10652. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Moffatt CE and Lamont RJ: Porphyromonas
gingivalis induction of microRNA-203 expression controls suppressor
of cytokine signaling 3 in gingival epithelial cells. Infect Immun.
79:2632–2637. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Moes M, Le Béchec A, Crespo I, Laurini C,
Halavatyi A, Vetter G, Del Sol A and Friederich E: A novel network
integrating a miRNA-203/SNAI1 feedback loop which regulates
epithelial to mesenchymal transition. PLoS One. 7:e354402012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Tendeng C and Houart C: Cloning and
embryonic expression of five distinct sfrp genes in the zebrafish
Danio rerio. Gene Expr Patterns. 6:761–771. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bayle J, Fitch J, Jacobsen K, Kumar R,
Lafyatis R and Lemaire R: Increased expression of Wnt2 and SFRP4 in
Tsk mouse skin: Role of Wnt signaling in altered dermal fibrillin
deposition and systemic sclerosis. J Invest Dermatol. 128:871–881.
2008. View Article : Google Scholar
|
22
|
Surendran K, Schiavi S and Hruska KA:
Wnt-dependent beta-catenin signaling is activated after unilateral
ureteral obstruction, and recombinant secreted frizzled-related
protein 4 alters the progression of renal fibrosis. J Am Soc
Nephrol. 16:2373–2384. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Matsushima K, Suyama T, Takenaka C,
Nishishita N, Ikeda K, Ikada Y, Sawa Y, Jakt LM, Mori H and
Kawamata S: Secreted frizzled related protein 4 reduces fibrosis
scar size and ameliorates cardiac function after ischemic injury.
Tissue Eng Part A. 16:3329–3341. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hu Y, Jian X, Peng J, Jiang X, Li N and
Zhou S: Gene expression profiling of oral submucous fibrosis using
oligonucleotide microarray. Oncol Rep. 20:287–294. 2008.PubMed/NCBI
|
25
|
Xu L, Li Q, Xu D, Wang Q, An Y, Du Q,
Zhang J, Zhu Y and Miao Y: hsa-miR-141 downregulates TM4SF1 to
inhibit pancreatic cancer cell invasion and migration. Int J Oncol.
44:459–466. 2014.
|
26
|
Tu SH, Huang HI, Lin SI, Liu HY, Sher YP,
Chiang SK, Chong P, Roffler S, Tseng GC, Chen HW, et al: A novel
HLA-A2-restricted CTL epitope of tumor-associated antigen L6 can
inhibit tumor growth in vivo. J Immunother. 35:235–244. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Bae S, Shim SH, Park CW, Son HK, Lee HJ,
Son JY, Jeon C and Kim H: Combined omics analysis identifies
transmembrane 4 L6 family member 1 as a surface protein marker
specific to human mesenchymal stem cells. Stem Cells Dev.
20:197–203. 2011. View Article : Google Scholar
|
28
|
Fuchs E, Tyner AL, Giudice GJ, Marchuk D,
RayChaudhury A and Rosenberg M: The human keratin genes and their
differential expression. Curr Top Dev Biol. 22:5–34. 1987.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Michel M, Török N, Godbout MJ, Lussier M,
Gaudreau P, Royal A and Germain L: Keratin 19 as a biochemical
marker of skin stem cells in vivo and in vitro: Keratin 19
expressing cells are differentially localized in function of
anatomic sites, and their number varies with donor age and culture
stage. J Cell Sci. 109:1017–1028. 1996.PubMed/NCBI
|
30
|
Li N, Jian X, Hu Y, Xu C, Yao Z and Zhong
X: Discovery of novel biomarkers in oral submucous fibrosis by
microarray analysis. Cancer Epidemiol Biomarkers Prev.
17:2249–2259. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Thiery JP and Sleeman JP: Complex networks
orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell
Biol. 7:131–142. 2006. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Wu CH, Tang SC, Wang PH, Lee H and Ko JL:
Nickel-induced epithelial-mesenchymal transition by reactive oxygen
species generation and E-cadherin promoter hypermethylation. J Biol
Chem. 287:25292–25302. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wheelock MJ, Shintani Y, Maeda M, Fukumoto
Y and Johnson KR: Cadherin switching. J Cell Sci. 121:727–735.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Islam S, Carey TE, Wolf GT, Wheelock MJ
and Johnson KR: Expression of N-cadherin by human squamous
carcinoma cells induces a scattered fibroblastic phenotype with
disrupted cell-cell adhesion. J Cell Biol. 135:1643–1654. 1996.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Guarino M, Tosoni A and Nebuloni M: Direct
contribution of epithelium to organ fibrosis:
Epithelial-mesenchymal transition. Hum Pathol. 40:1365–1376. 2009.
View Article : Google Scholar : PubMed/NCBI
|