Open Access

Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells

  • Authors:
    • Kai Jiang
    • Wei Wang
    • Xin Jin
    • Zhaoyang Wang
    • Zhiwei Ji
    • Guanmin Meng
  • View Affiliations

  • Published online on: April 17, 2015     https://doi.org/10.3892/or.2015.3915
  • Pages: 2711-2718
  • Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Silibinin, derived from the milk thistle plant (Silybum marianum), has anticancer and chemopreventive properties. Silibinin has been reported to inhibit the growth of various types of cancer cells. However, the mechanisms by which silibinin exerts an anticancer effect are poorly defined. The present study aimed to investigate whether silibinin-induced cell death might be attributed to autophagy and the underlying mechanisms in human MCF7 breast cancer cells. Our results showed that silibinin-induced cell death was greatly abrogated by two specific autophagy inhibitors, 3-methyladenine (3-MA) and bafilomycin-A1 (Baf-A1). In addition, silibinin triggered the conversion of light chain 3 (LC3)-I to LC3-II, promoted the upregulation of Atg12-Atg5 formation, increased Beclin-1 expression, and decreased the Bcl-2 level. Moreover, we noted elevated reactive oxygen species (ROS) generation, concomitant with the dissipation of mitochondrial transmembrane potential (ΔΨm) and a drastic decline in ATP levels following silibinin treatment, which were effectively prevented by the antioxidants, N-acetylcysteine and ascorbic acid. Silibinin stimulated the expression of Bcl-2 adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a pro-death Bcl-2 family member, and silencing of BNIP3 greatly inhibited silibinin-induced cell death, decreased ROS production, and sustained ΔΨm and ATP levels. Taken together, these findings revealed that silibinin induced autophagic cell death through ROS-dependent mitochondrial dysfunction and ATP depletion involving BNIP3 in MCF7 cells.
View Figures
View References

Related Articles

Journal Cover

June-2015
Volume 33 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Jiang K, Wang W, Jin X, Wang Z, Ji Z and Meng G: Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep 33: 2711-2718, 2015.
APA
Jiang, K., Wang, W., Jin, X., Wang, Z., Ji, Z., & Meng, G. (2015). Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncology Reports, 33, 2711-2718. https://doi.org/10.3892/or.2015.3915
MLA
Jiang, K., Wang, W., Jin, X., Wang, Z., Ji, Z., Meng, G."Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells". Oncology Reports 33.6 (2015): 2711-2718.
Chicago
Jiang, K., Wang, W., Jin, X., Wang, Z., Ji, Z., Meng, G."Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells". Oncology Reports 33, no. 6 (2015): 2711-2718. https://doi.org/10.3892/or.2015.3915