1
|
Hezel AF, Kimmelman AC, Stanger BZ,
Bardeesy N and Depinho RA: Genetics and biology of pancreatic
ductal adenocarcinoma. Genes Dev. 20:1218–1249. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wray CJ, Ahmad SA, Matthews JB and Lowy
AM: Surgery for pancreatic cancer: Recent controversies and current
practice. Gastroenterology. 128:1626–1641. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 59:225–249.
2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Breslin TM, Hess KR, Harbison DB, Jean ME,
Cleary KR, Dackiw AP, Wolff RA, Abbruzzese JL, Janjan NA, Crane CH,
et al: Neoadjuvant chemoradiotherapy for adenocarcinoma of the
pancreas: Treatment variables and survival duration. Ann Surg
Oncol. 8:123–132. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Maecker HT, Todd SC and Levy S: The
tetraspanin superfamily: Molecular facilitators. FASEB J.
11:428–442. 1997.PubMed/NCBI
|
6
|
Berditchevski F: Complexes of tetraspanins
with integrins: More than meets the eye. J Cell Sci. 114:4143–4151.
2001.PubMed/NCBI
|
7
|
Boucheix C and Rubinstein E: Tetraspanins.
Cell Mol Life Sci. 58:1189–1205. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hemler ME: Tetraspanin proteins mediate
cellular penetration, invasion, and fusion events and define a
novel type of membrane microdomain. Annu Rev Cell Dev Biol.
19:397–422. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shaw AR, Domanska A, Mak A, Gilchrist A,
Dobler K, Visser L, Poppema S, Fliegel L, Letarte M and Willett BJ:
Ectopic expression of human and feline CD9 in a human B cell line
confers beta 1 integrin-dependent motility on fibronectin and
laminin substrates and enhanced tyrosine phosphorylation. J Biol
Chem. 270:24092–24099. 1995. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jones PH, Bishop LA and Watt FM:
Functional significance of CD9 association with beta 1 integrins in
human epidermal keratinocytes. Cell Adhes Commun. 4:297–305. 1996.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Inui S, Higashiyama S, Hashimoto K,
Higashiyama M, Yoshikawa K and Taniguchi N: Possible role of
coexpression of CD9 with membrane-anchored heparin-binding EGF-like
growth factor and amphiregulin in cultured human keratinocyte
growth. J Cell Physiol. 171:291–298. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Berditchevski F and Odintsova E:
Characterization of integrintetraspanin adhesion complexes: Role of
tetraspanins in integrin signaling. J Cell Biol. 146:477–492. 1999.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Baudoux B, Castanares-Zapatero D,
Leclercq-Smekens M, Berna N and Poumay Y: The tetraspanin CD9
associates with the integrin alpha6beta4 in cultured human
epidermal keratinocytes and is involved in cell motility. Eur J
Cell Biol. 79:41–51. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shi W, Fan H, Shum L and Derynck R: The
tetraspanin CD9 associates with transmembrane TGF-alpha and
regulates TGF-alpha-induced EGF receptor activation and cell
proliferation. J Cell Biol. 148:591–602. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Crnogorac-Jurcevic T, Efthimiou E, Capelli
P, Blaveri E, baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa
A, et al: Gene expression profiles of pancreatic cancer and stromal
desmoplasia. Oncogene. 20:7437–7446. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sho M, Adachi M, Taki T, Hashida H,
Konishi T, Huang CL, Ikeda N, Nakajima Y, Kanehiro H, Hisanaga M,
et al: Transmembrane 4 superfamily as a prognostic factor in
pancreatic cancer. Int J Cancer. 79:509–516. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Grønborg M, Kristiansen TZ, Iwahori A,
Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins
MG, et al: Biomarker discovery from pancreatic cancer secretome
using a differential proteomic approach. Mol Cell Proteomics.
5:157–171. 2006. View Article : Google Scholar
|
18
|
Elsässer HP, Lehr U, Agricola B and Kern
HF: Establishment and characterisation of two cell lines with
different grade of differentiation derived from one primary human
pancreatic adenocarcinoma. Virchows Arch B Cell Pathol Incl Mol
Pathol. 61:295–306. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen G, Kronenberger P, Teugels E, Umelo
IA and De Grève J: Targeting the epidermal growth factor receptor
in non-small cell lung cancer cells: The effect of combining RNA
interference with tyrosine kinase inhibitors or cetuximab. BMC Med.
10:282012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liang CC, Park AY and Guan JL: In vitro
scratch assay: A convenient and inexpensive method for analysis of
cell migration in vitro. Nat Protoc. 2:329–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Brand TM, Iida M, Li C and Wheeler DL: The
nuclear epidermal growth factor receptor signaling network and its
role in cancer. Discov Med. 12:419–432. 2011.PubMed/NCBI
|
22
|
Sousa LP, Lax I, Shen H, Ferguson SM, De
Camilli P and Schlessinger J: Suppression of EGFR endocytosis by
dynamin depletion reveals that EGFR signaling occurs primarily at
the plasma membrane. Proc Natl Acad Sci USA. 109:4419–4424. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Schroeder B, Weller SG, Chen J, Billadeau
D and McNiven MA: A Dyn2-CIN85 complex mediates degradative traffic
of the EGFR by regulation of late endosomal budding. EMBO J.
29:3039–3053. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen S, Sun Y, Jin Z and Jing X:
Functional and biochemical studies of CD9 in fibrosarcoma cell
line. Mol Cell Biochem. 350:89–99. 2011. View Article : Google Scholar
|
25
|
Fan J, Zhu GZ and Niles RM: Expression and
function of CD9 in melanoma cells. Mol Carcinog. 49:85–93.
2010.
|
26
|
Ono M, Handa K, Withers DA and Hakomori S:
Motility inhibition and apoptosis are induced by
metastasis-suppressing gene product CD82 and its analogue CD9, with
concurrent glycosylation. Cancer Res. 59:2335–2339. 1999.PubMed/NCBI
|
27
|
Copeland BT, Bowman MJ, Boucheix C and
Ashman LK: Knockout of the tetraspanin Cd9 in the TRAMP model of de
novo prostate cancer increases spontaneous metastases in an
organ-specific manner. Int J Cancer. 133:1803–1812. 2013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ovalle S, Gutiérrez-López MD, Olmo N,
Turnay J, Lizarbe MA, Majano P, Molina-Jiménez F, López-Cabrera M,
Yáñez-Mó M, Sánchez-Madrid F, et al: The tetraspanin CD9 inhibits
the proliferation and tumorigenicity of human colon carcinoma
cells. Int J Cancer. 121:2140–2152. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zheng R, Yano S, Zhang H, Nakataki E,
Tachibana I, Kawase I, Hayashi S and Sone S: CD9 overexpression
suppressed the liver metastasis and malignant ascites via
inhibition of proliferation and motility of small-cell lung cancer
cells in NK cell-depleted SCID mice. Oncol Res. 15:365–372.
2005.
|
30
|
Herr MJ, Longhurst CM, Baker B, Homayouni
R, Speich HE, Kotha J and Jennings LK: Tetraspanin CD9 modulates
human lymphoma cellular proliferation via histone deacetylase
activity. Biochem Biophys Res Commun. 447:616–620. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zöller M: Tetraspanins: Push and pull in
suppressing and promoting metastasis. Nat Rev Cancer. 9:40–55.
2009. View
Article : Google Scholar
|
32
|
Troiani T, Martinelli E, Capasso A,
Morgillo F, Orditura M, De Vita F and Ciardiello F: Targeting EGFR
in pancreatic cancer treatment. Curr Drug Targets. 13:802–810.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nankivell P, Williams H, McConkey C,
Webster K, High A, MacLennan K, Senguven B, Rabbitts P and Mehanna
H: Tetraspanins CD9 and CD151, epidermal growth factor receptor and
cyclooxygenase-2 expression predict malignant progression in oral
epithelial dysplasia. Br J Cancer. 109:2864–2874. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Murayama Y, Shinomura Y, Oritani K,
Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T,
Nakamoto T, et al: The tetraspanin CD9 modulates epidermal growth
factor receptor signaling in cancer cells. J Cell Physiol.
216:135–143. 2008. View Article : Google Scholar : PubMed/NCBI
|