1
|
de la Puente P, Muz B, Azab F, Luderer M
and Azab AK: Molecularly targeted therapies in multiple myeloma.
Leukemia Res Treat. 2014:9765672014.
|
2
|
Kawano Y, Fujiwara S, Wada N, Izaki M,
Yuki H, Okuno Y, Iyama K, Yamasaki H, Sakai A, Mitsuya H, et al:
Multiple myeloma cells expressing low levels of CD138 have an
immature phenotype and reduced sensitivity to lenalidomide. Int J
Oncol. 41:876–884. 2012.PubMed/NCBI
|
3
|
McCubrey JA, Steelman LS, Bertrand FE,
Davis NM, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F,
Maestro R, et al: Multifaceted roles of GSK-3 and Wnt/β-catenin in
hematopoiesis and leukemogenesis: Opportunities for therapeutic
intervention. Leukemia. 28:15–33. 2014. View Article : Google Scholar :
|
4
|
Schmeel LC, Schmeel FC, Kim Y, Endo T, Lu
D and Schmidt-Wolf IG: Targeting the Wnt/beta-catenin pathway in
multiple myeloma. Anticancer Res. 33:4719–4726. 2013.PubMed/NCBI
|
5
|
Redies C, Vanhalst K and Roy F:
delta-Protocadherins: Unique structures and functions. Cell Mol
Life Sci. 62:2840–2852. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vanhalst K, Kools P, Staes K, van Roy F
and Redies C: delta-Protocadherins: A gene family expressed
differentially in the mouse brain. Cell Mol Life Sci. 62:1247–1259.
2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Angst BD, Marcozzi C and Magee AI: The
cadherin superfamily: Diversity in form and function. J Cell Sci.
114:629–641. 2001.PubMed/NCBI
|
8
|
Nakao S, Platek A, Hirano S and Takeichi
M: Contact-dependent promotion of cell migration by the
OL-protocadherin-Nap1 interaction. J Cell Biol. 182:395–410. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Jao TM, Tsai MH, Lio HY, Weng WT, Chen CC,
Tzeng ST, Chang CY, Lai YC, Yen SJ, Yu SL, et al: Protocadherin 10
suppresses tumorigenesis and metastasis in colorectal cancer and
its genetic loss predicts adverse prognosis. Int J Cancer.
135:2593–2603. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ma JG, He ZK, Ma JH, Li WP and Sun G:
Downregulation of protocadherin-10 expression correlates with
malignant behaviour and poor prognosis in human bladder cancer. J
Int Med Res. 41:38–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Narayan G, Xie D, Freddy AJ, Ishdorj G, Do
C, Satwani P, Liyanage H, Clark L, Kisselev S, Nandula SV, et al:
PCDH10 promoter hypermethylation is frequent in most histologic
subtypes of mature lymphoid malignancies and occurs early in
lymphoma-genesis. Genes Chromosomes Cancer. 52:1030–1041. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhong X, Zhu Y, Mao J, Zhang J and Zheng
S: Frequent epigenetic silencing of PCDH10 by methylation in human
colorectal cancer. J Cancer Res Clin Oncol. 139:485–490. 2013.
View Article : Google Scholar
|
13
|
Li Y, Yang ZS, Song JJ, Liu Q and Chen JB:
Protocadherin-10 is involved in angiogenesis and methylation
correlated with multiple myeloma. Int J Mol Med. 29:704–710.
2012.PubMed/NCBI
|
14
|
Li Z, Yang Z, Peng X, Li Y, Liu Q and Chen
J: Nuclear factor-κB is involved in the protocadherin-10-mediated
pro-apoptotic effect in multiple myeloma. Mol Med Rep. 10:832–838.
2014.PubMed/NCBI
|
15
|
Danese E, Minicozzi AM, Benati M,
Montagnana M, Paviati E, Salvagno GL, Gusella M, Pasini F, Guidi GC
and Lippi G: Epigenetic alteration: New insights moving from tissue
to plasma - the example of PCDH10 promoter methylation in
colorectal cancer. Br J Cancer. 109:807–813. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang L, Xie P-G, Lin YL, Ma JG and Li WP:
Aberrant meth-ylation of PCDH10 predicts worse biochemical
recurrence-free survival in patients with prostate cancer after
radical prostatectomy. Med Sci Monit. 20:1363–1368. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Deng J, Liang H, Ying G, Dong Q, Zhang L,
Yu J, Fan D and Hao X: Clinical significance of the methylated
cytosine-phosphate-guanine sites of protocadherin-10 promoter for
evaluating the prognosis of gastric cancer. J Am Coll Surg.
219:904–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dallosso AR, Øster B, Greenhough A,
Thorsen K, Curry TJ, Owen C, Hancock AL, Szemes M, Paraskeva C,
Frank M, et al: Long-range epigenetic silencing of chromosome 5q31
proto- cadherins is involved in early and late stages of colorectal
tumori-genesis through modulation of oncogenic pathways. Oncogene.
31:4409–4419. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dallosso AR, Hancock AL, Szemes M,
Moorwood K, Chilukamarri L, Tsai HH, Sarkar A, Barasch J,
Vuononvirta R, Jones C, et al: Frequent long-range epigenetic
silencing of proto-cadherin gene clusters on chromosome 5q31 in
Wilms’ tumor. PLoS Genet. 5:e10007452009. View Article : Google Scholar
|
20
|
Yang X, Chen M-W, Terry S, Vacherot F,
Chopin DK, Bemis DL, Kitajewski J, Benson MC, Guo Y and Buttyan R:
A human- and male-specific protocadherin that acts through the wnt
signaling pathway to induce neuroendocrine transdifferentiation of
prostate cancer cells. Cancer Res. 65:5263–5271. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Qiang YW, Walsh K, Yao L, Kedei N,
Blumberg PM, Rubin JS, Shaughnessy J Jr and Rudikoff S: Wnts induce
migration and invasion of myeloma plasma cells. Blood.
106:1786–1793. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Iwai S, Yonekawa A, Harada C, Hamada M,
Katagiri W, Nakazawa M and Yura Y: Involvement of the Wnt-β-catenin
pathway in invasion and migration of oral squamous carcinoma cells.
Int J Oncol. 37:1095–1103. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Willis TG, Zalcberg IR, Coignet LJ,
Wlodarska I, Stul M, Jadayel DM, Bastard C, Treleaven JG, Catovsky
D, Silva ML, et al: Molecular cloning of translocation
t(1;14)(q21;q32) defines a novel gene (BCL9) at chromosome 1q21.
Blood. 91:1873–1881. 1998.PubMed/NCBI
|
24
|
Mani M, Carrasco DE, Zhang Y, Takada K,
Gatt ME, Dutta-Simmons J, Ikeda H, Diaz-Griffero F, Pena-Cruz V,
Bertagnolli M, et al: BCL9 promotes tumor progression by conferring
enhanced proliferative, metastatic, and angiogenic properties to
cancer cells. Cancer Res. 69:7577–7586. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Le Baccon P, Leroux D, Dascalescu C, Duley
S, Marais D, Esmenjaud E, Sotto JJ and Callanan M: Novel evidence
of a role for chromosome 1 pericentric heterochromatin in the
pathogenesis of B-cell lymphoma and multiple myeloma. Genes
Chromosomes Cancer. 32:250–264. 2001. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao Y, Yang Y, Trovik J, Sun K, Zhou L,
Jiang P, Lau TS, Hoivik EA, Salvesen HB, Sun H, et al: A novel wnt
regulatory axis in endometrioid endometrial cancer. Cancer Res.
74:5103–5117. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhao JJ, Lin J, Zhu D, Wang X, Brooks D,
Chen M, Chu ZB, Takada K, Ciccarelli B, Admin S, et al: miR-30–5p
functions as a tumor suppressor and novel therapeutic tool by
targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res.
74:1801–1813. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T,
Zhang J, Kang C and Zhang Q: MicroRNA-200a suppresses the
Wnt/β-catenin signaling pathway by interacting with β-catenin. Int
J Oncol. 40:1162–1170. 2012.PubMed/NCBI
|
29
|
Calaf GM, Alvarado ME and Hei TK: β
catenin is associated with breast cancer progression in vitro. Int
J Oncol. 26:913–921. 2005.PubMed/NCBI
|
30
|
Berry WL, Kim TD and Janknecht R:
Stimulation of β-catenin and colon cancer cell growth by the KDM4B
histone demethylase. Int J Oncol. 44:1341–1348. 2014.PubMed/NCBI
|
31
|
Ge X and Wang X: Role of Wnt canonical
pathway in hemato-logical malignancies. J Hematol Oncol. 3:332010.
View Article : Google Scholar
|
32
|
Liu YZ, Wu K, Huang J, Liu Y, Wang X, Meng
ZJ, Yuan SX, Wang DX, Luo JY, Zuo GW, et al: The PTEN/PI3K/Akt and
Wnt/β-catenin signaling pathways are involved in the inhibitory
effect of resveratrol on human colon cancer cell proliferation. Int
J Oncol. 45:104–112. 2014.PubMed/NCBI
|
33
|
Medina M, Garrido JJ and Wandosell FG:
Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies.
Front Mol Neurosci. 4:242011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kamarudin MN, Mohd Raflee NA, Hussein SS,
Lo JY, Supriady H and Abdul Kadir H: (R)-(+)-α-lipoic acid
protected NG108–15 cells against H2O2-induced
cell death through PI3K-Akt/GSK-3β pathway and suppression of
NF-κβ-cytokines. Drug Des Devel Ther. 8:1765–1780. 2014.
|
35
|
Fauriat C and Olive D: AML drug
resistance: c-Myc comes into play. Blood. 123:3528–3530. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Xie C, Pan Y, Hao F, Gao Y, Liu Z, Zhang
X, Xie L, Jiang G, Li Q and Wang E: C-Myc participates in
β-catenin-mediated drug resistance in A549/DDP lung adenocarcinoma
cells. APMIS. 122:1251–1258. 2014. View Article : Google Scholar : PubMed/NCBI
|