1
|
Jain RK: Antiangiogenesis strategies
revisited: From starving tumors to alleviating hypoxia. Cancer
Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vaupel P and Mayer A: Hypoxia in cancer:
Significance and impact on clinical outcome. Cancer Metastasis Rev.
26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Harrison LB, Chadha M, Hill RJ, Hu K and
Shasha D: Impact of tumor hypoxia and anemia on radiation therapy
outcomes. Oncologist. 7:492–508. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fleming IN, Manavaki R, Blower PJ, West C,
Williams KJ, Harris AL, Domarkas J, Lord S, Baldry C and Gilbert
FJ: Imaging tumour hypoxia with positron emission tomography. Br J
Cancer. 112:238–250. 2015. View Article : Google Scholar
|
5
|
Dehdashti F, Grigsby PW, Lewis JS,
Laforest R, Siegel BA and Welch MJ: Assessing tumor hypoxia in
cervical cancer by PET with 60Cu-labeled
diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med. 49:201–205.
2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rischin D, Hicks RJ, Fisher R, Binns D,
Corry J, Porceddu S and Peters LJ: Trans-Tasman Radiation Oncology
Group Study 98.02: Prognostic significance of
[18F]-misonidazole positron emission tomography-detected
tumor hypoxia in patients with advanced head and neck cancer
randomly assigned to chemoradiation with or without tirapazamine: A
substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J
Clin Oncol. 24:2098–2104. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mortensen LS, Johansen J, Kallehauge J,
Primdahl H, Busk M, Lassen P, Alsner J, Sørensen BS, Toustrup K,
Jakobsen S, et al: FAZA PET/CT hypoxia imaging in patients with
squamous cell carcinoma of the head and neck treated with
radiotherapy: Results from the DAHANCA 24 trial. Radiother Oncol.
105:14–20. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dence CS, Ponde DE, Welch MJ and Lewis JS:
Autoradiographic and small-animal PET comparisons between
(18)F-FMISO, (18) F-FDG, (18)F-FLT and the hypoxic selective
(64)Cu-ATSM in a rodent model of cancer. Nucl Med Biol. 35:713–720.
2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
O'Donoghue JA, Zanzonico P, Pugachev A,
Wen B, Smith-Jones P, Cai S, Burnazi E, Finn RD, Burgman P, Ruan S,
et al: Assessment of regional tumor hypoxia using
18F-fluoromisonidazole and
64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone)
positron emission tomography: Comparative study featuring microPET
imaging, Po2 probe measurement, autoradiography, and fluorescent
microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat
Oncol Biol Phys. 61:1493–1502. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Valtorta S, Belloli S, Sanvito F, Masiello
V, Di Grigoli G, Monterisi C, Fazio F, Picchio M and Moresco RM:
Comparison of 18F-fluoroazomycin-arabinofuranoside and
64Cu-diacetyl-bis(N4-methylthiosemicarbazone) in
preclinical models of cancer. J Nucl Med. 54:1106–1112. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Carlin S, Zhang H, Reese M, Ramos NN, Chen
Q and Ricketts SA: A comparison of the imaging characteristics and
microregional distribution of 4 hypoxia PET tracers. J Nucl Med.
55:515–521. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kondo J, Endo H, Okuyama H, Ishikawa O,
Iishi H, Tsujii M, Ohue M and Inoue M: Retaining cell-cell contact
enables preparation and culture of spheroids composed of pure
primary cancer cells from colorectal cancer. Proc Natl Acad Sci
USA. 108:6235–6240. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Obata A, Kasamatsu S, McCarthy DW, Welch
MJ, Saji H, Yonekura Y and Fujibayashi Y: Production of therapeutic
quantities of (64)Cu using a 12 MeV cyclotron. Nucl Med Biol.
30:535–539. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sorger D, Patt M, Kumar P, Wiebe LI,
Barthel H, Seese A, Dannenberg C, Tannapfel A, Kluge R and Sabri O:
[18F] Fluoroazomycin arabinofuranoside
(18FAZA) and [18F] Fluoromisonidazole
(18FMISO): A comparative study of their selective uptake
in hypoxic cells and PET imaging in experimental rat tumors. Nucl
Med Biol. 30:317–326. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Endo H, Okami J, Okuyama H, Kumagai T,
Uchida J, Kondo J, Takehara T, Nishizawa Y, Imamura F, Higashiyama
M, et al: Spheroid culture of primary lung cancer cells with
neuregulin 1/HER3 pathway activation. J Thorac Oncol. 8:131–139.
2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Busk M, Horsman MR, Jakobsen S, Keiding S,
van der Kogel AJ, Bussink J and Overgaard J: Imaging hypoxia in
xenografted and murine tumors with 18F-fluoroazomycin
arabinoside: A comparative study involving microPET,
autoradiography, PO2-polarography, and fluorescence microscopy. Int
J Radiat Oncol Biol Phys. 70:1202–1212. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gagel B, Reinartz P, Dimartino E, Zimny M,
Pinkawa M, Maneschi P, Stanzel S, Hamacher K, Coenen HH, Westhofen
M, et al: pO(2) Polarography versus positron emission tomography
([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2′-deoxyglucose). An
appraisal of radiotherapeutically relevant hypoxia. Strahlenther
Onkol. 180:616–622. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fujibayashi Y, Taniuchi H, Yonekura Y,
Ohtani H, Konishi J and Yokoyama A: Copper-62-ATSM: A new hypoxia
imaging agent with high membrane permeability and low redox
potential. J Nucl Med. 38:1155–1160. 1997.PubMed/NCBI
|
19
|
Donnelly PS, Liddell JR, Lim S, Paterson
BM, Cater MA, Savva MS, Mot AI, James JL, Trounce IA, White AR, et
al: An impaired mitochondrial electron transport chain increases
retention of the hypoxia imaging agent
diacetylbis(4-methylthiosemicarbazonato)copperII. Proc Natl Acad
Sci USA. 109:47–52. 2012. View Article : Google Scholar :
|
20
|
Yoshii Y, Yoneda M, Ikawa M, Furukawa T,
Kiyono Y, Mori T, Yoshii H, Oyama N, Okazawa H, Saga T, et al:
Radiolabeled Cu-ATSM as a novel indicator of overreduced
intracellular state due to mitochondrial dysfunction: Studies with
mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS
mitochondrial DNA mutation. Nucl Med Biol. 39:177–185. 2012.
View Article : Google Scholar
|
21
|
Lewis JS, Herrero P, Sharp TL, Engelbach
JA, Fujibayashi Y, Laforest R, Kovacs A, Gropler RJ and Welch MJ:
Delineation of hypoxia in canine myocardium using PET and
copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone). J Nucl Med.
43:1557–1569. 2002.PubMed/NCBI
|
22
|
Takahashi N, Fujibayashi Y, Yonekura Y,
Welch MJ, Waki A, Tsuchida T, Sadato N, Sugimoto K, Nakano A, Lee
JD, et al: Copper-62 ATSM as a hypoxic tissue tracer in myocardial
ischemia. Ann Nucl Med. 15:293–296. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ikawa M, Okazawa H, Arakawa K, Kudo T,
Kimura H, Fujibayashi Y, Kuriyama M and Yoneda M: PET imaging of
redox and energy states in stroke-like episodes of MELAS.
Mitochondrion. 9:144–148. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Furukawa T, Yuan Q, Jin ZH, Aung W, Yoshii
Y, Hasegawa S, Endo H, Inoue M, Zhang MR, Fujibayashi Y, et al:
Comparison of intratumoral FDG and Cu-ATSM distributions in cancer
tissue originated spheroid (CTOS) xenografts, a tumor model
retaining the original tumor properties. Nucl Med Biol. 41:653–659.
2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hueting R, Kersemans V, Cornelissen B,
Tredwell M, Hussien K, Christlieb M, Gee AD, Passchier J, Smart SC,
Dilworth JR, et al: A comparison of the behavior of (64)Cu-acetate
and (64) Cu-ATSM in vitro and in vivo. J Nucl Med. 55:128–134.
2014. View Article : Google Scholar
|
26
|
Lewis JS, McCarthy DW, McCarthy TJ,
Fujibayashi Y and Welch MJ: Evaluation of 64Cu-ATSM in vitro and in
vivo in a hypoxic tumor model. J Nucl Med. 40:177–183.
1999.PubMed/NCBI
|
27
|
Wada K, Fujibayashi Y and Yokoyama A:
Copper(II) [2,3-butanedionebis(N4-methylthiosemicarbazone)], a
stable superoxide dismutase-like copper complex with high membrane
penetrability. Arch Biochem Biophys. 310:1–5. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Semenza GL: HIF-1 mediates metabolic
responses to intratumoral hypoxia and oncogenic mutations. J Clin
Invest. 123:3664–3671. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fujii H, Yamaguchi M, Inoue K, Mutou Y,
Ueda M, Saji H, Kizaka-Kondoh S, Moriyama N and Umeda IO: In vivo
visualization of heterogeneous intratumoral distribution of
hypoxia-inducible factor-1α activity by the fusion of
high-resolution SPECT and morphological imaging tests. J Biomed
Biotechnol. 2012:2627412012. View Article : Google Scholar
|
30
|
Jankovic B, Aquino-Parsons C, Raleigh JA,
Stanbridge EJ, Durand RE, Banath JP, MacPhail SH and Olive PL:
Comparison between pimonidazole binding, oxygen electrode
measurements, and expression of endogenous hypoxia markers in
cancer of the uterine cervix. Cytometry B Clin Cytom. 70:45–55.
2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sobhanifar S, Aquino-Parsons C, Stanbridge
EJ and Olive P: Reduced expression of hypoxia-inducible
factor-1alpha in perinecrotic regions of solid tumors. Cancer Res.
65:7259–7266. 2005. View Article : Google Scholar : PubMed/NCBI
|