1
|
Chiorazzi N, Rai KR and Ferrarini M:
Chronic lymphocytic leukemia. N Engl J Med. 352:804–815. 2005.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zenz T, Mertens D, Küppers R, Döhner H and
Stilgenbauer S: From pathogenesis to treatment of chronic
lymphocytic leukaemia. Nat Rev Cancer. 10:37–50. 2010.
|
3
|
Korz C, Pscherer A, Benner A, Mertens D,
Schaffner C, Leupolt E, Döhner H, Stilgenbauer S and Lichter P:
Evidence for distinct pathomechanisms in B-cell chronic lymphocytic
leukemia and mantle cell lymphoma by quantitative expression
analysis of cell cycle and apoptosis-associated genes. Blood.
99:4554–4561. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Skrzeczyńska-Moncznik J, Bzowska M, Loseke
S, Grage-Griebenow E, Zembala M and Pryjma J: Peripheral blood
CD14high CD16+ monocytes are main producers
of IL-10. Scand J Immunol. 67:152–159. 2008. View Article : Google Scholar
|
5
|
Ziegler-Heitbrock HW, Passlick B and
Flieger D: The monoclonal antimonocyte antibody My4 stains B
lymphocytes and two distinct monocyte subsets in human peripheral
blood. Hybridoma. 7:521–527. 1988. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ziegler-Heitbrock L, Ancuta P, Crowe S,
Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph
GJ, et al: Nomenclature of monocytes and dendritic cells in blood.
Blood. 116:e74–e80. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Moniuszko M, Bodzenta-Lukaszyk A, Kowal K,
Lenczewska D and Dabrowska M: Enhanced frequencies of
CD14++CD16+, but not
CD14+CD16+, peripheral blood monocytes in
severe asthmatic patients. Clin Immunol. 130:338–346. 2009.
View Article : Google Scholar
|
8
|
Moniuszko M, Liyanage NP, Doster MN, Parks
RW, Grubczak K, Lipinska D, McKinnon K, Brown C, Hirsch V, Vaccari
M, et al: Glucocorticoid treatment at moderate doses of
SIVmac251-infected rhesus macaques decreases the frequency of
circulating CD14+CD16++ monocytes but does
not alter the tissue virus reservoir. AIDS Res Hum Retroviruses.
31:115–126. 2015. View Article : Google Scholar
|
9
|
Eljaszewicz A, Wiese M, Helmin-Basa A,
Jankowski M, Gackowska L, Kubiszewska I, Kaszewski W, Michalkiewicz
J and Zegarski W: Collaborating with the enemy: Function of
macrophages in the development of neoplastic disease. Mediators
Inflamm. 2013:8313872013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Leidi M, Gotti E, Bologna L, Miranda E,
Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M and Golay J:
M2 macrophages phagocytose rituximab-opsonized leukemic targets
more efficiently than M1 cells in vitro. J Immunol. 182:4415–4422.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Eljaszewicz A, Jankowski M, Gackowska L,
Helmin-Basa A, Wiese M, Kubiszewska I, Kaszewski W, Michalkiewicz J
and Zegarski W: Gastric cancer increase the percentage of
intermediate (CD14++CD16+) and nonclassical
(CD14+CD16+) monocytes. Centr Eur J Immunol.
37:355–361. 2012. View Article : Google Scholar
|
12
|
Heine GH, Ulrich C, Seibert E, Seiler S,
Marell J, Reichart B, Krause M, Schlitt A, Köhler H and Girndt M:
CD14++CD16+ monocytes but not total monocyte
numbers predict cardiovascular events in dialysis patients. Kidney
Int. 73:622–629. 2008. View Article : Google Scholar
|
13
|
Ulrich C, Heine GH, Gerhart MK, Köhler H
and Girndt M: Proinflammatory CD14+CD16+
monocytes are associated with subclinical atherosclerosis in renal
transplant patients. Am J Transplant. 8:103–110. 2008. View Article : Google Scholar
|
14
|
Foa R, Massaia M, Cardona S, Tos AG,
Bianchi A, Attisano C, Guarini A, di Celle PF and Fierro MT:
Production of tumor necrosis factor-alpha by B-cell chronic
lymphocytic leukemia cells: A possible regulatory role of TNF in
the progression of the disease. Blood. 76:393–400. 1990.PubMed/NCBI
|
15
|
Gamberale R, Geffner J, Arrosagaray G,
Scolnik M, Salamone G, Trevani A, Vermeulen M and Giordano M:
Non-malignant leukocytes delay spontaneous B-CLL cell apoptosis.
Leukemia. 15:1860–1867. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Burger JA, Tsukada N, Burger M, Zvaifler
NJ, Dell'Aquila M and Kipps TJ: Blood-derived nurse-like cells
protect chronic lymphocytic leukemia B cells from spontaneous
apoptosis through stromal cell-derived factor-1. Blood.
96:2655–2663. 2000.PubMed/NCBI
|
17
|
Nishio M, Endo T, Tsukada N, Ohata J,
Kitada S, Reed JC, Zvaifler NJ and Kipps TJ: Nurselike cells
express BAFF and APRIL, which can promote survival of chronic
lymphocytic leukemia cells via a paracrine pathway distinct from
that of SDF-1alpha. Blood. 106:1012–1020. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Maffei R, Bulgarelli J, Fiorcari S,
Bertoncelli L, Martinelli S, Guarnotta C, Castelli I, Deaglio S,
Debbia G, De Biasi S, et al: The monocytic population in chronic
lymphocytic leukemia shows altered composition and deregulation of
genes involved in phagocytosis and inflammation. Haematologica.
98:1115–1123. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Condeelis J and Pollard JW: Macrophages:
Obligate partners for tumor cell migration, invasion, and
metastasis. Cell. 124:263–266. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Steidl C, Lee T, Shah SP, Farinha P, Han
G, Nayar T, Delaney A, Jones SJ, Iqbal J, Weisenburger DD, et al:
Tumor-associated macrophages and survival in classic Hodgkin's
lymphoma. N Engl J Med. 362:875–885. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Etzerodt A and Moestrup SK: CD163 and
inflammation: Biological, diagnostic, and therapeutic aspects.
Antioxid Redox Signal. 18:2352–2363. 2013. View Article : Google Scholar :
|
22
|
Moniuszko M, Kowal K, Rusak M, Pietruczuk
M, Dabrowska M and Bodzenta-Lukaszyk A: Monocyte CD163 and CD36
expression in human whole blood and isolated mononuclear cell
samples: Influence of different anticoagulants. Clin Vaccine
Immunol. 13:704–707. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Davis BH and Zarev PV: Human monocyte
CD163 expression inversely correlates with soluble CD163 plasma
levels. Cytometry B Clin Cytom. 63:16–22. 2005. View Article : Google Scholar
|
24
|
Møller HJ, Aerts H, Grønbaek H, Peterslund
NA, Hyltoft Petersen P, Hornung N, Rejnmark L, Jabbarpour E and
Moestrup SK: Soluble CD163: A marker molecule for
monocyte/macrophage activity in disease. Scand J Clin Lab Invest
Suppl. 237:29–33. 2002. View Article : Google Scholar
|
25
|
Gui T, Shimokado A, Sun Y, Akasaka T and
Muragaki Y: Diverse roles of macrophages in atherosclerosis: From
inflammatory biology to biomarker discovery. Mediators Inflamm.
2012:6930832012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hallek M, Cheson BD, Catovsky D,
Caligaris-Cappio F, Dighiero G, Döhner H, Hillmen P, Keating MJ,
Montserrat E, Rai KR, et al International Workshop on Chronic
Lymphocytic Leukemia: Guidelines for the diagnosis and treatment of
chronic lymphocytic leukemia: A report from the International
Workshop on Chronic Lymphocytic Leukemia updating the National
Cancer Institute-Working Group 1996 guidelines. Blood.
111:5446–5456. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pardoll D: Does the immune system see
tumors as foreign or self? Annu Rev Immunol. 21:807–839. 2003.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mytar B, Wołoszyn M, Szatanek R,
Baj-Krzyworzeka M, Siedlar M, Ruggiero I, Wieckiewicz J and Zembala
M: Tumor cell-induced deactivation of human monocytes. J Leukoc
Biol. 74:1094–1101. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gabrilovich DI and Nagaraj S:
Myeloid-derived suppressor cells as regulators of the immune
system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ostrand-Rosenberg S and Sinha P:
Myeloid-derived suppressor cells: Linking inflammation and cancer.
J Immunol. 182:4499–4506. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Seiffert M, Schulz A, Ohl S, Döhner H,
Stilgenbauer S and Lichter P: Soluble CD14 is a novel
monocyte-derived survival factor for chronic lymphocytic leukemia
cells, which is induced by CLL cells in vitro and present at
abnormally high levels in vivo. Blood. 116:4223–4230. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Go NF, Castle BE, Barrett R, Kastelein R,
Dang W, Mosmann TR, Moore KW and Howard M: Interleukin 10, a novel
B cell stimulatory factor: Unresponsiveness of X chromosome-linked
immunodeficiency B cells. J Exp Med. 172:1625–1631. 1990.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Rothe G, Gabriel H, Kovacs E, Klucken J,
Stöhr J, Kindermann W and Schmitz G: Peripheral blood mononuclear
phagocyte subpopulations as cellular markers in
hypercholesterolemia. Arterioscler Thromb Vasc Biol. 16:1437–1447.
1996. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ohri CM, Shikotra A, Green RH, Waller DA
and Bradding P: Macrophages within NSCLC tumour islets are
predominantly of a cytotoxic M1 phenotype associated with extended
survival. Eur Respir J. 33:118–126. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wong KL, Tai JJ, Wong WC, Han H, Sem X,
Yeap WH, Kourilsky P and Wong SC: Gene expression profiling reveals
the defining features of the classical, intermediate, and
nonclassical human monocyte subsets. Blood. 118:e16–e31. 2011.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Bieber K and Autenrieth SE: Insights how
monocytes and dendritic cells contribute and regulate immune
defense against microbial pathogens. Immunobiology. 220:215–226.
2015. View Article : Google Scholar
|
37
|
Zhou D, Huang C, Lin Z, Zhan S, Kong L,
Fang C and Li J: Macrophage polarization and function with emphasis
on the evolving roles of coordinated regulation of cellular
signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar
|
38
|
Beum PV, Kennedy AD and Taylor RP: Three
new assays for rituximab based on its immunological activity or
antigenic properties: Analyses of sera and plasmas of RTX-treated
patients with chronic lymphocytic leukemia and other B cell
lymphomas. J Immunol Methods. 289:97–109. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Beum PV, Kennedy AD, Williams ME,
Lindorfer MA and Taylor RP: The shaving reaction: Rituximab/CD20
complexes are removed from mantle cell lymphoma and chronic
lymphocytic leukemia cells by THP-1 monocytes. J Immunol.
176:2600–2609. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Beum PV, Mack DA, Pawluczkowycz AW,
Lindorfer MA and Taylor RP: Binding of rituximab, trastuzumab,
cetuximab, or mAb T101 to cancer cells promotes trogocytosis
mediated by THP-1 cells and monocytes. J Immunol. 181:8120–8132.
2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bover LC, Cardó-Vila M, Kuniyasu A, Sun J,
Rangel R, Takeya M, Aggarwal BB, Arap W and Pasqualini R: A
previously unrecognized protein-protein interaction between TWEAK
and CD163: Potential biological implications. J Immunol.
178:8183–8194. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Moniuszko M, Kowal K, Jeznach M, Rusak M,
Dabrowska M and Bodzenta-Lukaszyk A: Phenotypic correlations
between monocytes and CD4+ T cells in allergic patients.
Int Arch Allergy Immunol. 161:131–141. 2013. View Article : Google Scholar
|
43
|
Buechler C, Ritter M, Orsó E, Langmann T,
Klucken J and Schmitz G: Regulation of scavenger receptor CD163
expression in human monocytes and macrophages by pro- and
antiinflam-matory stimuli. J Leukoc Biol. 67:97–103.
2000.PubMed/NCBI
|
44
|
Pioli PA, Goonan KE, Wardwell K and Guyre
PM: TGF-beta regulation of human macrophage scavenger receptor
CD163 is Smad3-dependent. J Leukoc Biol. 76:500–508. 2004.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Schaer DJ, Alayash AI and Buehler PW:
Gating the radical hemoglobin to macrophages: The anti-inflammatory
role of CD163, a scavenger receptor. Antioxid Redox Signal.
9:991–999. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Philippidis P, Mason JC, Evans BJ, Nadra
I, Taylor KM, Haskard DO and Landis RC: Hemoglobin scavenger
receptor CD163 mediates interleukin-10 release and heme oxygenase-1
synthesis: Antiinflammatory monocyte-macrophage responses in vitro,
in resolving skin blisters in vivo, and after cardiopulmonary
bypass surgery. Circ Res. 94:119–126. 2004. View Article : Google Scholar
|
47
|
Hamann W, Flöter A, Schmutzler W and
Zwadlo-Klarwasser G: Characterization of a novel anti-inflammatory
factor produced by RM3/1 macrophages derived from glucocorticoid
treated human monocytes. Inflamm Res. 44:535–540. 1995. View Article : Google Scholar : PubMed/NCBI
|
48
|
Shabo I, Stål O, Olsson H, Doré S and
Svanvik J: Breast cancer expression of CD163, a macrophage
scavenger receptor, is related to early distant recurrence and
reduced patient survival. Int J Cancer. 123:780–786. 2008.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Mansfield AS, Heikkila P, von Smitten K,
Vakkila J and Leidenius M: The presence of sinusoidal
CD163+ macrophages in lymph nodes is associated with
favorable nodal status in patients with breast cancer. Virchows
Arch. 461:639–646. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Goodale D, Phay C, Brown W, Gray-Statchuk
L, Furlong P, Lock M, Chin-Yee I, Keeney M and Allan AL: Flow
cytometric assessment of monocyte activation markers and
circulating endo-thelial cells in patients with localized or
metastatic breast cancer. Cytometry B Clin Cytom. 76:107–117. 2009.
View Article : Google Scholar
|
51
|
Tiainen S, Tumelius R, Rilla K, Hämäläinen
K, Tammi M, Tammi R, Kosma VM, Oikari S and Auvinen P: High numbers
of macrophages, especially M2-like (CD163-positive), correlate with
hyaluronan accumulation and poor outcome in breast cancer.
Histopathology. 66:873–883. 2015. View Article : Google Scholar
|
52
|
He KF, Zhang L, Huang CF, Ma SR, Wang YF,
Wang WM, Zhao ZL, Liu B, Zhao YF, Zhang WF, et al:
CD163+ tumor-associated macrophages correlated with poor
prognosis and cancer stem cells in oral squamous cell carcinoma.
BioMed Res Int. 2014:8386322014.
|
53
|
Chen L, Li Q, Zhou XD, Shi Y, Yang L, Xu
SL, Chen C, Cui YH, Zhang X and Bian XW: Increased pro-angiogenic
factors, infiltrating neutrophils and CD163+ macrophages
in bronchoalveolar lavage fluid from lung cancer patients. Int
Immunopharmacol. 20:74–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Lim R, Lappas M, Riley C, Borregaard N,
Moller HJ, Ahmed N and Rice GE: Investigation of human cationic
antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as
potential biomarkers for ovarian cancer. J Ovarian Res. 6:52013.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang J, Guo W, Du H, Yu H, Jiang W, Zhu T,
Bai X and Wang P: Elevated soluble CD163 plasma levels are
associated with disease severity in patients with hemorrhagic fever
with renal syndrome. PLoS One. 9:e1121272014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ye H, Wang LY, Zhao J and Wang K:
Increased CD163 expression is associated with acute-on-chronic
hepatitis B liver failure. World J Gastroenterol. 19:2818–2825.
2013. View Article : Google Scholar : PubMed/NCBI
|