Nanotechnology applications in hematological malignancies (Review)
- Authors:
- Ahmed Samir
- Basma M. Elgamal
- Hala Gabr
- Hatem E. Sabaawy
-
Affiliations: Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt, Department of Clinical Pathology, Kasr Al‑Ainy Faculty of Medicine, Cairo University, Cairo, Egypt - Published online on: July 2, 2015 https://doi.org/10.3892/or.2015.4100
- Pages: 1097-1105
This article is mentioned in:
Abstract
Feynman R: There's plenty of room at the bottom: An invitation to enter a new field of physics. Caltech Engineering and Science. 23(5): 22–36. 1959. | |
Jain KK: Introduction to nanomedicine. The handbook of nanomedicine. Jain KK: Hamana press; pp. 1–5. 2008, View Article : Google Scholar | |
Ren Y, Zhang H, Chen B, Cheng J, Cai X, Liu R, Xia G, Wu W, Wang S, Ding J, et al: Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int J Nanomed. 7:2261–2269. 2012. | |
Fakruddin M, Hossain Z and Afroz H: Prospects and applications of nanobiotechnology: A medical perspective. J Nanobiotechnol. 10:312012. View Article : Google Scholar | |
Kim ES, Ahn EH, Chung E and Kim DH: Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine. Mol Cells. 36:477–484. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Gao T, Hong H and Sun J: Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 1:17–32. 2008.PubMed/NCBI | |
Bharali DJ and Mousa SA: Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol Ther. 128:324–335. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Kim BY, Rutka JT and Chan WC: Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 3:145–150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T and Discher DE: Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2:249–255. 2007. View Article : Google Scholar | |
Verma A and Stellacci F: Effect of surface properties on nanoparticle-cell interactions. Small. 6:12–21. 2010. View Article : Google Scholar | |
Olsen RJ, Chang CC, Herrick JL, Zu Y and Ehsan A: Acute leukemia immunohistochemistry: A systematic diagnostic approach. Arch Pathol Lab Med. 132:462–475. 2008.PubMed/NCBI | |
Ferrara F and Schiffer CA: Acute myeloid leukaemia in adults. Lancet. 381:484–495. 2013. View Article : Google Scholar : PubMed/NCBI | |
Inaba H, Greaves M and Mullighan CG: Acute lymphoblastic leukaemia. Lancet. 381:1943–1955. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salem DA and Abd El-Aziz SM: Flowcytometric immunopheno-typic profile of acute leukemia: Mansoura experience. Indian J Hematol Blood Transfus. 28:89–96. 2012. View Article : Google Scholar : | |
Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, et al: Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 23:235–244. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter CM, Al-Quran SZ and Li Y: Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol. 7:52014. View Article : Google Scholar : PubMed/NCBI | |
Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, McDevitt MR, Patel DJ and Scheinberg DA: A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res. 39:2458–2469. 2011. View Article : Google Scholar : | |
Lakhin AV, Tarantul VZ and Gening LV: Aptamers: Problems, solutions and prospects. Acta Naturae. 5:34–43. 2013. | |
Herr JK, Smith JE, Medley CD, Shangguan D and Tan W: Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem. 78:2918–2924. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shook D, Coustan-Smith E, Ribeiro RC, Rubnitz JE and Campana D: Minimal residual disease quantitation in acute myeloid leukemia. Clin Lymphoma Myeloma. 9(Suppl 3): S281–S285. 2009. View Article : Google Scholar : PubMed/NCBI | |
Campana D and Coustan-Smith E: Measurements of treatment response in childhood acute leukemia. Korean J Hematol. 47:245–254. 2012. View Article : Google Scholar | |
Campana D: Minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2010:7–12. 2010. View Article : Google Scholar | |
Jaetao JE, Butler KS, Adolphi NL, Lovato DM, Bryant HC, Rabinowitz I, Winter SS, Tessier TE, Hathaway HJ, Bergemann C, et al: Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res. 69:8310–8316. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pillai JJ, Thulasidasan AK, Anto RJ, Chithralekha DN, Narayanan A and Kumar GS: Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells. J Nanobiotechnol. 12:252014. View Article : Google Scholar | |
Davis T and Farag SS: Treating relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: Liposome-encapsulated vincristine. Int J Nanomed. 8:3479–3488. 2013. | |
Krishnan V, Xu X, Barwe SP, Yang X, Czymmek K, Waldman SA, Mason RW, Jia X and Rajasekaran AK: Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: A novel application in pediatric nanomedicine. Mol Pharm. 10:2199–2210. 2013. View Article : Google Scholar | |
Rahman HS, Rasedee A, How CW, Abdul AB, Zeenathul NA, Othman HH, Saeed MI and Yeap SK: Zerumbone-loaded nanostructured lipid carriers: Preparation, characterization, and antileukemic effect. Int J Nanomed. 8:2769–2781. 2013. View Article : Google Scholar | |
Cosco D, Rocco F, Ceruti M, Vono M, Fresta M and Paolino D: Self-assembled squalenoyl-cytarabine nanostructures as a potent nanomedicine for treatment of leukemic diseases. Int J Nanomed. 7:2535–2546. 2012. | |
Lai BB, Chen BA, Cheng J, Gao F, Xu WL, Ding JH, Gao C, Sun XC, Li GH, Chen WJ, et al: Daunorubicin-loaded magnetic nanoparticles of Fe3O4 greatly enhance the responses of multi-drug-resistant K562 leukemic cells in a nude mouse xenograft model to chemotherapy. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 17:345–351. 2009.PubMed/NCBI | |
He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, Li Y and Shi J: A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 32:7711–7720. 2011. View Article : Google Scholar : PubMed/NCBI | |
De Boer AB, De Lange EL, Van der Sandt IC and Breimer DD: Transporters and the blood-brain barrier (BBB). Int J Clin Pharmacol Ther. 36:14–15. 1998.PubMed/NCBI | |
Cianfriglia M: Targeting MDR1-P-glycoprotein (MDR1-Pgp) in immunochemotherapy of acute myeloid leukemia (AML). Ann Ist Super Sanita. 49:190–208. 2013.PubMed/NCBI | |
Chen B, Sun Q, Wang X, Gao F, Dai Y, Yin Y, Ding J, Gao C, Cheng J, Li J, et al: Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells. Int J Nanomed. 3:277–286. 2008. | |
Chen BA, Lai BB, Cheng J, Xia GH, Gao F, Xu WL, Ding JH, Gao C, Sun XC, Xu CR, et al: Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo. Int J Nanomed. 4:201–208. 2009. View Article : Google Scholar | |
Janko C, Dürr S, Munoz LE, Lyer S, Chaurio R, Tietze R, Löhneysen S, Schorn C, Herrmann M and Alexiou C: Magnetic drug targeting reduces the chemotherapeutic burden on circulating leukocytes. Int J Mol Sci. 14:7341–7355. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Li J, Li W, Zhang Y, Yang X, Chen N, Sun Y, Zhao Y, Fan C and Huang Q: The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2:302–312. 2012. View Article : Google Scholar : PubMed/NCBI | |
Man HB, Kim H, Kim HJ, Robinson E, Liu WK, Chow EK and Ho D: Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine. 10:359–369. 2014. View Article : Google Scholar : | |
Ghoneum A, Sharma S and Gimzewski J: Nano-hole induction by nanodiamond and nanoplatinum liquid, DPV576, reverses multidrug resistance in human myeloid leukemia (HL60/AR). Int J Nanomed. 8:2567–2573. 2013. View Article : Google Scholar | |
Grignani F, Testa U, Fagioli M, Barberi T, Masciulli R, Mariani G, Peschle C and Pelicci PG: Promyelocytic leukemia-specific PML-retinoic acid alpha receptor fusion protein interferes with erythroid differentiation of human erythroleukemia K562 cells. Cancer Res. 55:440–443. 1995.PubMed/NCBI | |
Imaizumi M, Suzuki H, Yoshinari M, Sato A, Saito T, Sugawara A, Tsuchiya S, Hatae Y, Fujimoto T, Kakizuka A, et al: Mutations in the E-domain of RARα portion of the PML/RARα chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood. 92:374–382. 1998.PubMed/NCBI | |
Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK and Nah JW: Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharm. 319:130–138. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fung TK and So CW: Overcoming treatment resistance in acute promyelocytic leukemia and beyond. Oncotarget. 4:1128–1129. 2013.PubMed/NCBI | |
Huang X, Jain PK, El-Sayed IH and El-Sayed MA: Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2:681–693. 2007. View Article : Google Scholar : PubMed/NCBI | |
Choi YE, Kwak JW and Park JW: Nanotechnology for early cancer detection. Sens Basel. 10:428–455. 2010. View Article : Google Scholar | |
Radwan SH and Azzazy HM: Gold nanoparticles for molecular diagnostics. Expert Rev Mol Diagn. 9:511–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hwang SH, Im SG, Hah SS, Cong VT, Lee EJ, Lee YS, Lee GK, Lee DH and Son SJ: Effects of upconversion nanoparticles on polymerase chain reaction. PLoS One. 8:e734082013. View Article : Google Scholar : PubMed/NCBI | |
Gormally E, Vineis P, Matullo G, Veglia F, Caboux E, Le Roux E, Peluso M, Garte S, Guarrera S, Munnia A, et al: TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: A prospective study. Cancer Res. 66:6871–6876. 2006. View Article : Google Scholar : PubMed/NCBI | |
Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE, et al: An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: Developed for the American Society of Hematology. Blood. 94:1517–1536. 1999.PubMed/NCBI | |
Shet AS, Jahagirdar BN and Verfaillie CM: Chronic myelogenous leukemia: Mechanisms underlying disease progression. Leukemia. 16:1402–1411. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, et al: Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia. 17:2318–2357. 2003. View Article : Google Scholar : PubMed/NCBI | |
Conde J, Doria G and Baptista P: Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012:7510752012. View Article : Google Scholar | |
Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E and Franco R: Nanoparticles in molecular diagnostics. Prog Mol Biol Transl Sci. 104:427–488. 2011. View Article : Google Scholar : PubMed/NCBI | |
El-Metnawy WH, Mattar MM, El-Nahass YH, Samra MA, Abdelhamid HM, Abdlfattah RM and Hamed AR: Predictive value of pretreatment BCR-ABL (IS) transcript level on response to imatinib therapy in Egyptian patients with chronic phase chronic myeloid leukemia (CPCML). Int J Biomed Sci. 9:48–53. 2013.PubMed/NCBI | |
Kang Y, Hodges A, Ong E, Roberts W, Piermarocchi C and Paternostro G: Identification of drug combinations containing imatinib for treatment of BCR-ABL+ leukemias. PLoS One. 9:e1022212014. View Article : Google Scholar : PubMed/NCBI | |
Palamà IE, Coluccia AM and Gigli G: Uptake of imatinib-loaded polyelectrolyte complexes by BCR-ABL+ cells: A long-acting drug-delivery strategy for targeting oncoprotein activity. Nanomedicine. 9:2087–2098. 2014. View Article : Google Scholar | |
Jamieson CH: Chronic myeloid leukemia stem cells. Hematology Am Soc Hematol Educ Program. 2008:436–442. 2008. View Article : Google Scholar | |
Vilpo J, Hulkkonen J, Hurme M and Vilpo L: Surface membrane antigen expression changes induced in vitro by exogenous growth factors in chronic lymphocytic leukemia cells. Leukemia. 16:1691–1698. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, et al: Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): Enhancing apoptosis. J Nanobiotechnol. 5:42007. View Article : Google Scholar | |
Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF and Kay NE: VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood. 104:788–794. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bogusz J, Majchrzak A, Mędra A, Cebula-Obrzut B, Robak T and Smolewski P: Mechanisms of action of the anti-VEGF monoclonal antibody bevacizumab on chronic lymphocytic leukemia cells. Postepy Hig Med Dosw Online. 67:107–118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shanafelt TD, Gunderson H and Call TG: Commentary: Chronic lymphocytic leukemia - the price of progress. Oncologist. 15:601–602. 2010. View Article : Google Scholar | |
Żołnierczyk JD, Borowiak A, Błoński JZ, Cebula-Obrzut B, Rogalińska M, Kotkowska A, Wawrzyniak E, Smolewski P, Robak T and Kiliańska ZM: In vivo and ex vivo responses of CLL cells to purine analogs combined with alkylating agent. Pharmacol Rep. 65:460–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yu B, Mao Y, Yuan Y, Yue C, Wang X, Mo X, Jarjoura D, Paulaitis ME, Lee RJ and Byrd JC: Targeted drug delivery and cross-linking induced apoptosis with anti-CD37 based dual-ligand immunoliposomes in B chronic lymphocytic leukemia cells. Biomaterials. 34:6185–6193. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siddiqi T, Thomas SH and Chen R: Role of brentuximab vedotin in the treatment of relapsed or refractory Hodgkin lymphoma. Pharmgenomics Pers Med. 7:79–85. 2014.PubMed/NCBI | |
Zharov VP, Mercer KE, Galitovskaya EN and Smeltzer MS: Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 90:619–627. 2006. View Article : Google Scholar | |
Kutok JL and Aster JC: Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma. J Clin Oncol. 20:3691–3702. 2002. View Article : Google Scholar : PubMed/NCBI | |
Heidegger S, Beer AJ, Geissinger E, Rosenwald A, Peschel C, Ringshausen I and Keller U: Combination therapy with brentuximab vedotin and cisplatin/cytarabine in a patient with primarily refractory anaplastic lymphoma kinase positive anaplastic large cell lymphoma. Onco Targets Ther. 7:1123–1127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zdzalik D, Dymek B, Grygielewicz P, Gunerka P, Bujak A, Lamparska-Przybysz M, Wieczorek M and Dzwonek K: Activating mutations in ALK kinase domain confer resistance to structurally unrelated ALK inhibitors in NPM-ALK-positive anaplastic large-cell lymphoma. J Cancer Res Clin Oncol. 140:589–598. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao N, Bagaria HG, Wong MS and Zu Y: A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnol. 9:22011. View Article : Google Scholar | |
Zinzani PL, Vose JM, Czuczman MS, Reeder CB, Haioun C, Polikoff J, Tilly H, Zhang L, Prandi K, Li J, et al: Long-term follow-up of lenalidomide in relapsed/refractory mantle cell lymphoma: Subset analysis of the NHL-003 study. Ann Oncol. 24:2892–2897. 2013. View Article : Google Scholar : PubMed/NCBI | |
Desai M, Newberry K, Ou Z, Wang M and Zhang L: Lenalidomide in relapsed or refractory mantle cell lymphoma: Overview and perspective. Ther Adv Hematol. 5:91–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pighi C, Gu TL, Dalai I, Barbi S, Parolini C, Bertolaso A, Pedron S, Parisi A, Ren J, Cecconi D, et al: Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol. 34:141–153. 2011. View Article : Google Scholar | |
Cely I, Yiv S, Yin Q, Shahidzadeh A, Tang L, Cheng J and Uckun FM: Targeting mantle cell lymphoma with anti-SYK nanoparticles. J Anal Oncol. 1:1–9. 2012. |