The complex liaison between cachexia and tumor burden (Review)
- Authors:
- Andrea De Lerma Barbaro
-
Affiliations: Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, Varese, Italy - Published online on: July 31, 2015 https://doi.org/10.3892/or.2015.4164
- Pages: 1635-1649
This article is mentioned in:
Abstract
Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev. 89:381–410. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fearon KC, Glass DJ and Guttridge DC: Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 16:153–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Argilés JM, Busquets S, Stemmler B and López-Soriano FJ: Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ali S and Garcia JM: Sarcopenia, cachexia and aging: Diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology. 60:294–305. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI | |
Argilés JM, López-Soriano FJ, Toledo M, Betancourt A, Serpe R and Busquets S: The cachexia score (CASCO): A new tool for staging cachectic cancer patients. J Cachexia Sarcopenia Muscle. 2:87–93. 2011. View Article : Google Scholar : PubMed/NCBI | |
Windsor JA and Hill GL: Risk factors for postoperative pneumonia. The importance of protein depletion. Ann Surg. 208:209–214. 1988. View Article : Google Scholar : PubMed/NCBI | |
Tian M, Nishijima Y, Asp ML, Stout MB, Reiser PJ and Belury MA: Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol. 37:347–353. 2010.PubMed/NCBI | |
Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME and Guttridge DC: Chemotherapy-induced muscle wasting: Association with NF-κB and cancer cachexia. Basic Appl Myol. 18:139–148. 2008. | |
Sakai H, Sagara A, Arakawa K, Sugiyama R, Hirosaki A, Takase K, Jo A, Sato K, Chiba Y, Yamazaki M, et al: Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol. 278:190–199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bachmann J, Heiligensetzer M, Krakowski-Roosen H, Büchler MW, Friess H and Martignoni ME: Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surg. 12:1193–1201. 2008. View Article : Google Scholar : PubMed/NCBI | |
Onesti JK and Guttridge DC: Inflammation based regulation of cancer cachexia. Biomed Res Int. 2014:1684072014. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS: The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 245:621–625. 1999. View Article : Google Scholar : PubMed/NCBI | |
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schakman O, Kalista S, Barbé C, Loumaye A and Thissen JP: Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 45:2163–2172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Watchorn TM, Waddell I, Dowidar N and Ross JA: Proteolysis-inducing factor regulates hepatic gene expression via the transcription factors NF-(kappa)B and STAT3. FASEB J. 15:562–564. 2001.PubMed/NCBI | |
Deans DA, Wigmore SJ, Gilmour H, Tisdale MJ, Fearon KC and Ross JA: Expression of the proteolysis-inducing factor core peptide mRNA is upregulated in both tumour and adjacent normal tissue in gastro-oesophageal malignancy. Br J Cancer. 94:731–736. 2006.PubMed/NCBI | |
Han HQ, Zhou X, Mitch WE and Goldberg AL: Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol. 45:2333–2347. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM and Lee SJ: Induction of cachexia in mice by systemically administered myostatin. Science. 296:1486–1488. 2002. View Article : Google Scholar : PubMed/NCBI | |
Elkina Y, von Haehling S, Anker SD and Springer J: The role of myostatin in muscle wasting: An overview. J Cachexia Sarcopenia Muscle. 2:143–151. 2011. View Article : Google Scholar : PubMed/NCBI | |
Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB and Baracos VE: Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 31:1539–1547. 2013. View Article : Google Scholar : PubMed/NCBI | |
Egerman MA and Glass DJ: Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 49:59–68. 2014. View Article : Google Scholar : | |
Nagy V and Dikic I: Ubiquitin ligase complexes: From substrate selectivity to conjugational specificity. Biol Chem. 391:163–169. 2010. View Article : Google Scholar | |
Baird TD and Wek RC: Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr. 3:307–321. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE and Goldberg AL: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18:39–51. 2004. View Article : Google Scholar : PubMed/NCBI | |
Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, et al: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20:433–447. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bosaeus I, Daneryd P, Svanberg E and Lundholm K: Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer. 93:380–383. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tisdale MJ: Molecular pathways leading to cancer cachexia. Physiology (Bethesda). 20:340–348. 2005. View Article : Google Scholar | |
Hyltander A, Drott C, Körner U, Sandstrom R and Lundholm K: Elevated energy expenditure in cancer patients with solid tumours. Eur J Cancer. 27:9–15. 1991. View Article : Google Scholar : PubMed/NCBI | |
Cantor JR and Sabatini DM: Cancer cell metabolism: One hallmark, many faces. Cancer Discov. 2:881–898. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Delano MJ and Moldawer LL: The origins of cachexia in acute and chronic inflammatory diseases. Nutr Clin Pract. 21:68–81. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F and Ricquier D: The biology of mitochondrial uncoupling proteins. Diabetes. 53(Suppl 1): S130–S135. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bing C, Russell ST, Beckett EE, Collins P, Taylor S, Barraclough R, Tisdale MJ and Williams G: Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor. Br J Cancer. 86:612–618. 2002. View Article : Google Scholar : PubMed/NCBI | |
Thair SA, Walley KR, Nakada TA, McConechy MK, Boyd JH, Wellman H and Russell JA: A single nucleotide polymorphism in NF-κB inducing kinase is associated with mortality in septic shock. J Immunol. 186:2321–2328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan BH, Ross JA, Kaasa S, Skorpen F and Fearon KC; European Palliative Care Research Collaborative: Identification of possible genetic polymorphisms involved in cancer cachexia: A systematic review. J Genet. 90:165–177. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schneider DS and Ayres JS: Two ways to survive infection: What resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 8:889–895. 2008. View Article : Google Scholar : PubMed/NCBI | |
Råberg L, Graham AL and Read AF: Decomposing health: Tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci. 364:37–49. 2009. View Article : Google Scholar : | |
Li C, Corraliza I and Langhorne J: A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect Immun. 67:4435–4442. 1999.PubMed/NCBI | |
Medzhitov R, Schneider DS and Soares MP: Disease tolerance as a defense strategy. Science. 335:936–941. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Lerma Barbaro A, Perletti G, Bonapace IM and Monti E: Inflammatory cues acting on the adult intestinal stem cells and the early onset of cancer (Review). Int J Oncol. 45:959–968. 2014.PubMed/NCBI | |
Wu ZH and Shi Y: When ubiquitin meets NF-κB: A trove for anticancer drug development. Curr Pharm Des. 19:3263–3275. 2013. View Article : Google Scholar : | |
Karin M, Cao Y, Greten FR and Li ZW: NF-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer. 2:301–310. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, et al: IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell. 119:285–298. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA and Kandarian SC; SC: Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J. 16:529–538. 2002. View Article : Google Scholar : PubMed/NCBI | |
Penner CG, Gang G, Wray C, Fischer JE and Hasselgren PO: The transcription factors NF-kappab and AP-1 are differentially regulated in skeletal muscle during sepsis. Biochem Biophys Res Commun. 281:1331–1336. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wyke SM, Russell ST and Tisdale MJ: Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-kappaB activation. Br J Cancer. 91:1742–1750. 2004.PubMed/NCBI | |
Wang H, Lai YJ, Chan YL, Li TL and Wu CJ: Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia. Cancer Lett. 305:40–49. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Wan L, Zhou Z, Li Y, Yu Q, Liu L, Li B and Guo C: Parthenolide from Parthenium integrifolium reduces tumor burden and alleviate cachexia symptoms in the murine CT-26 model of colorectal carcinoma. Phytomedicine. 20:992–998. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crawford LJ, Walker B and Irvine AE: Proteasome inhibitors in cancer therapy. J Cell Commun Signal. 5:101–110. 2011. View Article : Google Scholar : PubMed/NCBI | |
Beck SA, Smith KL and Tisdale MJ: Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res. 51:6089–6093. 1991.PubMed/NCBI | |
Whitehouse AS, Smith HJ, Drake JL and Tisdale MJ: Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 61:3604–3609. 2001.PubMed/NCBI | |
Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG and Zimmers TA: Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun. 391:1548–1554. 2010. View Article : Google Scholar | |
Marchal JA, Lopez GJ, Peran M, Comino A, Delgado JR, García-García JA, Conde V, Aranda FM, Rivas C, Esteban M, et al: The impact of PKR activation: from neurodegeneration to cancer. FASEB J. 28:1965–1974. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eley HL and Tisdale MJ: Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem. 282:7087–7097. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eley HL, Russell ST and Tisdale MJ: Role of the dsRNA-dependent protein kinase (PKR) in the attenuation of protein loss from muscle by insulin and insulin-like growth factor-I (IGF-I). Mol Cell Biochem. 313:63–69. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eley HL, Russell ST and Tisdale MJ: Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinase. Br J Cancer. 96:1216–1222. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eley HL, Russell ST and Tisdale MJ: Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J. 407:113–120. 2007. View Article : Google Scholar : PubMed/NCBI | |
Davis TW, Zweifel BS, O'Neal JM, Heuvelman DM, Abegg AL, Hendrich TO and Masferrer JL: Inhibition of cyclooxygenase-2 by celecoxib reverses tumor-induced wasting. J Pharmacol Exp Ther. 308:929–934. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hyde CA and Missailidis S: Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol. 9:701–715. 2009. View Article : Google Scholar : PubMed/NCBI | |
Roth E: Immune and cell modulation by amino acids. Clin Nutr. 26:535–544. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ham DJ, Murphy KT, Chee A, Lynch GS and Koopman R: Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clin Nutr. 33:448–458. 2014. View Article : Google Scholar | |
Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, et al: Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 142:531–543. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gallot YS, Durieux AC, Castells J, Desgeorges MM, Vernus B, Plantureux L, Rémond D, Jahnke VE, Lefai E, Dardevet D, et al: Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Res. 74:7344–7356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, et al: A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 151:1319–1331. 2012. View Article : Google Scholar : PubMed/NCBI | |
Braun TP, Grossberg AJ, Krasnow SM, Levasseur PR, Szumowski M, Zhu XX, Maxson JE, Knoll JG, Barnes AP and Marks DL: Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J. 27:3572–3582. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kadmiel M and Cidlowski JA: Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 34:518–530. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schakman O, Kalista S, Barbé C, Loumaye A and Thissen JP: Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 45:2163–2172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, et al: Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 333:233–238. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE and Spiegelman BM: Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 513:100–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hendifar A, Yang D, Lenz F, Lurje G, Pohl A, Lenz C, Ning Y, Zhang W and Lenz HJ: Gender disparities in metastatic colorectal cancer survival. Clin Cancer Res. 15:6391–6397. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koo JH, Jalaludin B, Wong SK, Kneebone A, Connor SJ and Leong RW: Improved survival in young women with colorectal cancer. Am J Gastroenterol. 103:1488–1495. 2008. View Article : Google Scholar : PubMed/NCBI | |
al-Azzawi F and Wahab M: Estrogen and colon cancer: Current issues. Climacteric. 5:3–14. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cosper PF and Leinwand LA: Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res. 71:1710–1720. 2011. View Article : Google Scholar : | |
Sandri M: Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 45:2121–2129. 2013. View Article : Google Scholar : PubMed/NCBI | |
Strassmann G, Masui Y, Chizzonite R and Fong M: Mechanisms of experimental cancer cachexia. Local involvement of IL-1 in colon-26 tumor. J Immunol. 150:2341–2345. 1993.PubMed/NCBI | |
Piccinini AM and Midwood KS: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010:6723952010.PubMed/NCBI | |
Cannon TY, Guttridge D, Dahlman J, George JR, Lai V, Shores C, Buzková P and Couch ME: The effect of altered Toll-like receptor 4 signaling on cancer cachexia. Arch Otolaryngol Head Neck Surg. 133:1263–1269. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vahle AK, Kerem A, Oztürk E, Bankfalvi A, Lang S and Brandau S: Optimization of an orthotopic murine model of head and neck squamous cell carcinoma in fully immunocompetent mice - role of toll-like-receptor 4 expressed on host cells. Cancer Lett. 317:199–206. 2012. View Article : Google Scholar | |
Di Marco S, Cammas A, Lian XJ, Kovacs EN, Ma JF, Hall DT, Mazroui R, Richardson J, Pelletier J and Gallouzi IE: The translation inhibitor pateamine A prevents cachexia-induced muscle wasting in mice. Nat Commun. 3:8962012. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsov G, Xu Q, Rudolph-Owen L, Tendyke K, Liu J, Towle M, Zhao N, Marsh J, Agoulnik S, Twine N, et al: Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Mol Cancer Ther. 8:1250–1260. 2009. View Article : Google Scholar : PubMed/NCBI | |
Buck M and Chojkier M: Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 15:1753–1765. 1996.PubMed/NCBI | |
Hall DT, Ma JF, Marco SD and Gallouzi IE: Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY). 3:702–715. 2011. | |
Buchan JR and Parker R: Eukaryotic stress granules: The ins and outs of translation. Mol Cell. 36:932–941. 2009. View Article : Google Scholar | |
Pretto F, Ghilardi C, Moschetta M, Bassi A, Rovida A, Scarlato V, Talamini L, Fiordaliso F, Bisighini C, Damia G, et al: Sunitinib prevents cachexia and prolongs survival of mice bearing renal cancer by restraining STAT3 and MuRF-1 activation in muscle. Oncotarget. 6:3043–3054. 2015. | |
Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, Koniaris LG and Zimmers TA: JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am J Physiol Endocrinol Metab. 303:E410–E421. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez MC, Pastore CA, Orlandi SP and Heymsfield SB: Obesity paradox in cancer: New insights provided by body composition. Am J Clin Nutr. 99:999–1005. 2014. View Article : Google Scholar : PubMed/NCBI | |
Monitto CL, Berkowitz D, Lee KM, Pin S, Li D, Breslow M, O'Malley B and Schiller M: Differential gene expression in a murine model of cancer cachexia. Am J Physiol Endocrinol Metab. 281:E289–E297. 2001.PubMed/NCBI | |
Robert F, Mills JR, Agenor A, Wang D, DiMarco S, Cencic R, Tremblay ML, Gallouzi IE, Hekimi S, Wing SS, et al: Targeting protein synthesis in a Myc/mTOR-driven model of anorexia-cachexia syndrome delays its onset and prolongs survival. Cancer Res. 72:747–756. 2012. View Article : Google Scholar | |
Cuenca AG, Cuenca AL, Winfield RD, Joiner DN, Gentile L, Delano MJ, Kelly-Scumpia KM, Scumpia PO, Matheny MK, Scarpace PJ, et al: Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J Immunol. 192:6111–6119. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ and Carson JA: Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol. 294:R393–R401. 2008. View Article : Google Scholar | |
Velázquez KT, Enos RT, Narsale AA, Puppa MJ, Davis JM, Murphy EA and Carson JA: Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. J Nutr. 144:868–875. 2014. View Article : Google Scholar | |
Lyons SK: Advances in imaging mouse tumour models in vivo. J Pathol. 205:194–205. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB and Mootha VK: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 336:1040–1044. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rose ML, Madren J, Bunzendahl H and Thurman RG: Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis. 20:793–798. 1999. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cheng H, Zhou Y, Zhu Y, Bian R, Chen Y, Li C, Ma Q, Zheng Q, Zhang Y, et al: Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells. Cell Death Dis. 4:e4942013. View Article : Google Scholar : PubMed/NCBI | |
Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI |