1
|
Pathmanathan R, Prasad U, Chandrika G,
Sadler R, Flynn K and Raab-Traub N: Undifferentiated,
nonkeratinizing, and squamous cell carcinoma of the nasopharynx.
Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol.
146:1355–1367. 1995.PubMed/NCBI
|
2
|
Devi BC, Pisani P, Tang TS and Parkin DM:
High incidence of nasopharyngeal carcinoma in native people of
Sarawak, Borneo Island. Cancer Epidemiol Biomarkers Prev.
13:482–486. 2004.PubMed/NCBI
|
3
|
Zeng MS and Zeng YX: Pathogenesis and
etiology of nasopharyngeal carcinoma. Nasopharyngeal Cancer Medical
Radiology. Springer Berlin; Heidelberg: pp. 9–25. 2010, View Article : Google Scholar
|
4
|
Khoo AS and Pua KC: Diagnosis and clinical
evaluation of nasopharyngeal carcinoma. Nasopharyngeal Carcinoma:
Keys for Translational Medicine and Biology. Landes Bioscience and
Springer Science:Business Media; New York, NY: pp. 1–9. 2013,
View Article : Google Scholar
|
5
|
Pua KC, Khoo AS, Yap YY, Subramaniam SK,
Ong CA, Gopala Krishnan G and Shahid H; The Malaysian
Nasopharyngeal Carcinoma Study Group: Nasopharyngeal Carcinoma
Database. Med J Malaysia. 63(Suppl C): 59–62. 2008.
|
6
|
Lee AW, Lin JC and Ng WT: Current
management of nasopharyngeal cancer. Semin Radiat Oncol.
22:233–244. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang L, Chen QY, Liu H, Tang LQ and Mai
HQ: Emerging treatment options for nasopharyngeal carcinoma. Drug
Des Devel Ther. 7:37–52. 2013.PubMed/NCBI
|
8
|
Chee Ee Phua V, Loo WH, Yusof MM, Wan
Ishak WZ, Tho LM and Ung NM: Treatment outcome for nasopharyngeal
carcinoma in University Malaya Medical Centre from 2004–2008. Asian
Pac J Cancer Prev. 14:4567–4570. 2013. View Article : Google Scholar
|
9
|
Razak AR, Siu LL, Liu FF, Ito E,
O'Sullivan B and Chan K: Nasopharyngeal carcinoma: The next
challenges. Eur J Cancer. 46:1967–1978. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tuan JK, Ha TC, Ong WS, Siow TR, Tham IW,
Yap SP, Tan TW, Chua ET, Fong KW and Wee JT: Late toxicities after
conventional radiation therapy alone for nasopharyngeal carcinoma.
Radiother Oncol. 104:305–311. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Brown CJ, Lain S, Verma CS, Fersht AR and
Lane DP: Awakening guardian angels: Drugging the p53 pathway. Nat
Rev Cancer. 9:862–873. 2009. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Michael D and Oren M: The p53-Mdm2 module
and the ubiquitin system. Semin Cancer Biol. 13:49–58. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Fuchs SY, Adler V, Buschmann T, Wu X and
Ronai Z: Mdm2 association with p53 targets its ubiquitination.
Oncogene. 17:2543–2547. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Vassilev LT, Vu BT, Graves B, Carvajal D,
Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C and Klein C:
In vivo activation of the p53 pathway by small-molecule antagonists
of MDM2. Science. 303:844–848. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wiman KG: Strategies for therapeutic
targeting of the p53 pathway in cancer. Cell Death Differ.
13:921–926. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kojima K, Konopleva M, Samudio IJ, Shikami
M, Cabreira-Hansen M, McQueen T, Ruvolo V, Tsao T, Zeng Z, Vassilev
LT, et al: MDM2 antagonists induce p53-dependent apoptosis in AML:
Implications for leukemia therapy. Blood. 106:3150–3159. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Saddler C, Ouillette P, Kujawski L,
Shangary S, Talpaz M, Kaminski M, Erba H, Shedden K, Wang S and
Malek SN: Comprehensive biomarker and genomic analysis identifies
p53 status as the major determinant of response to MDM2 inhibitors
in chronic lymphocytic leukemia. Blood. 111:1584–1593. 2008.
View Article : Google Scholar
|
18
|
Stühmer T, Chatterjee M, Hildebrandt M,
Herrmann P, Gollasch H, Gerecke C, Theurich S, Cigliano L, Manz RA,
Daniel PT, et al: Nongenotoxic activation of the p53 pathway as a
therapeutic strategy for multiple myeloma. Blood. 106:3609–3617.
2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ye F, Lattif AA, Xie J, Weinberg A and Gao
S: Nutlin-3 induces apoptosis, disrupts viral latency and inhibits
expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell
Cycle. 11:1393–1399. 2012. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Müller CR, Paulsen EB, Noordhuis P,
Pedeutour F, Saeter G and Myklebost O: Potential for treatment of
liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer.
121:199–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Miyachi M, Kakazu N, Yagyu S, Katsumi Y,
Tsubai-Shimizu S, Kikuchi K, Tsuchiya K, Iehara T and Hosoi H:
Restoration of p53 pathway by nutlin-3 induces cell cycle arrest
and apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res.
15:4077–4084. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sonnemann J, Palani CD, Wittig S, Becker
S, Eichhorn F, Voigt A and Beck JF: Anticancer effects of the p53
activator nutlin-3 in Ewing's sarcoma cells. Eur J Cancer.
47:1432–1441. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hori T, Kondo T, Kanamori M, Tabuchi Y,
Ogawa R, Zhao QL, Ahmed K, Yasuda T, Seki S, Suzuki K, et al:
Nutlin-3 enhances tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL)-induced apoptosis through up-regulation of death
receptor 5 (DR5) in human sarcoma HOS cells and human colon cancer
HCT116 cells. Cancer Lett. 287:98–108. 2010. View Article : Google Scholar
|
24
|
Koster R, Timmer-Bosscha H, Bischoff R,
Gietema JA and de Jong S: Disruption of the MDM2-p53 interaction
strongly potentiates p53-dependent apoptosis in cisplatin-resistant
human testicular carcinoma cells via the Fas/FasL pathway. Cell
Death Dis. 2:e1482011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tovar C, Rosinski J, Filipovic Z, Higgins
B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K, et al:
Small-molecule MDM2 antagonists reveal aberrant p53 signaling in
cancer: Implications for therapy. Proc Natl Acad Sci USA.
103:1888–1893. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Van Maerken T, Ferdinande L, Taildeman J,
Lambertz I, Yigit N, Vercruysse L, Rihani A, Michaelis M, Cinatl J
Jr, Cuvelier CA, et al: Antitumor activity of the selective MDM2
antagonist nutlin-3 against chemoresistant neuroblastoma with
wild-type p53. J Natl Cancer Inst. 101:1562–1574. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Khoo KH, Verma CS and Lane DP: Drugging
the p53 pathway: Understanding the route to clinical efficacy. Nat
Rev Drug Discov. 13:217–236. 2014. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Effert P, McCoy R, Abdel-Hamid M, Flynn K,
Zhang Q, Busson P, Tursz T, Liu E and Raab-Traub N: Alterations of
the p53 gene in nasopharyngeal carcinoma. J Virol. 66:3768–3775.
1992.PubMed/NCBI
|
29
|
Hoe SL, Lee ES, Khoo AS and Peh SC: p53
and nasopharyngeal carcinoma: A Malaysian study. Pathology.
41:561–565. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang KP, Hao SP, Lin SY, Tsao KC, Kuo TT,
Tsai MH, Tseng CK and Tsang NM: A lack of association between p53
mutations and recurrent nasopharyngeal carcinomas refractory to
radiotherapy. Laryngoscope. 112:2015–2019. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hui AB, Lo KW, Leung SF, Teo P, Fung MK,
To KF, Wong N, Choi PH, Lee JC and Huang DP: Detection of recurrent
chromosomal gains and losses in primary nasopharyngeal carcinoma by
comparative genomic hybridisation. Int J Cancer. 82:498–503. 1999.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang ZC, Fu S, Wang F, Wang HY, Zeng YX
and Shao JY: Oncogene mutational profile in nasopharyngeal
carcinoma. Onco Targets Ther. 7:457–467. 2014.PubMed/NCBI
|
33
|
Liu MT, Chang YT, Chen SC, Chuang YC, Chen
YR, Lin CS and Chen JY: Epstein-Barr virus latent membrane protein
1 represses p53-mediated DNA repair and transcriptional activity.
Oncogene. 24:2635–2646. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pan JJ, Zhang SW, Chen CB, Xiao SW, Sun Y,
Liu CQ, Su X, Li DM, Xu G, Xu B, et al: Effect of recombinant
adenovirus-p53 combined with radiotherapy on long-term prognosis of
advanced nasopharyngeal carcinoma. J Clin Oncol. 27:799–804. 2009.
View Article : Google Scholar
|
35
|
Weinrib L, Li JH, Donovan J, Huang D and
Liu FF: Cisplatin chemotherapy plus adenoviral p53 gene therapy in
EBV-positive and -negative nasopharyngeal carcinoma. Cancer Gene
Ther. 8:352–360. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Michaelis M, Rothweiler F, Barth S, Cinatl
J, van Rikxoort M, Löschmann N, Voges Y, Breitling R, von Deimling
A, Rödel F, et al: Adaptation of cancer cells from different
entities to the MDM2 inhibitor nutlin-3 results in the emergence of
p53-mutated multi-drug-resistant cancer cells. Cell Death Dis.
2:e2432011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shangary S and Wang S: Small-molecule
inhibitors of the MDM2-p53 protein-protein interaction to
reactivate p53 function: A novel approach for cancer therapy. Annu
Rev Pharmacol Toxicol. 49:223–241. 2009. View Article : Google Scholar :
|
38
|
Matlashewski GJ, Tuck S, Pim D, Lamb P,
Schneider J and Crawford LV: Primary structure polymorphism at
amino acid residue 72 of human p53. Mol Cell Biol. 7:961–963.
1987.PubMed/NCBI
|
39
|
Fan R, Wu MT, Miller D, Wain JC, Kelsey
KT, Wiencke JK and Christiani DC: The p53 codon 72 polymorphism and
lung cancer risk. Cancer Epidemiol Biomarkers Prev. 9:1037–1042.
2000.PubMed/NCBI
|
40
|
Udin N, Ahmad KA, Ahmad F, Omar E, Aziz
ME, Kumar R and Abdullah JM: Molecular genetic analysis of a
suprasellar immature teratoma : Mutation of exon 4 p53 gene. Malays
J Med Sci. 15:43–46. 2008.PubMed/NCBI
|
41
|
Yang W, Zhang Y, Tian X, Ning T and Ke Y:
p53 Codon 72 polymorphism and the risk of esophageal squamous cell
carcinoma. Mol Carcinog. 47:100–104. 2008. View Article : Google Scholar
|
42
|
Spruck CH III, Tsai YC, Huang DP, Yang AS,
Rideout WM III, Gonzalez-Zulueta M, Choi P, Lo KW, Yu MC and Jones
PA: Absence of p53 gene mutations in primary nasopharyngeal
carcinomas. Cancer Res. 52:4787–4790. 1992.PubMed/NCBI
|
43
|
Jiang M, Pabla N, Murphy RF, Yang T, Yin
XM, Degenhardt K, White E and Dong Z: Nutlin-3 protects kidney
cells during cisplatin therapy by suppressing Bax/Bak activation. J
Biol Chem. 282:2636–2645. 2007. View Article : Google Scholar
|
44
|
Chang LJ and Eastman A: Differential
regulation of p21 (waf1) protein half-life by DNA damage and
Nutlin-3 in p53 wild-type tumors and its therapeutic implications.
Cancer Biol Ther. 13:1047–1057. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Valentine JM, Kumar S and Moumen A: A
p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage
response initiation. BMC Cancer. 11:792011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Barbieri E, Mehta P, Chen Z, Zhang L,
Slack A, Berg S and Shohet JM: MDM2 inhibition sensitizes
neuroblastoma to chemotherapy-induced apoptotic cell death. Mol
Cancer Ther. 5:2358–2365. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Endo S, Yamato K, Hirai S, Moriwaki T,
Fukuda K, Suzuki H, Abei M, Nakagawa I and Hyodo I: Potent in vitro
and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric
cancer cells. Cancer Sci. 102:605–613. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mir R, Tortosa A, Martinez-Soler F, Vidal
A, Condom E, Pérez-Perarnau A, Ruiz-Larroya T, Gil J and
Giménez-Bonafé P: Mdm2 antagonists induce apoptosis and synergize
with cisplatin overcoming chemoresistance in TP53 wild-type ovarian
cancer cells. Int J Cancer. 132:1525–1536. 2013. View Article : Google Scholar
|
49
|
Bauer S, Mühlenberg T, Leahy M, Hoiczyk M,
Gauler T, Schuler M and Looijenga L: Therapeutic potential of Mdm2
inhibition in malignant germ cell tumours. Eur Urol. 57:679–687.
2010. View Article : Google Scholar
|