1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLoBoCAn 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar
|
2
|
Collins LG, Haines C, Perkel R and Enck
RE: Lung cancer: Diagnosis and management. Am Fam Physician.
75:56–63. 2007.PubMed/NCBI
|
3
|
Moscatello DK, Ramirez G and Wong AJ: A
naturally occurring mutant human epidermal growth factor receptor
as a target for peptide vaccine immunotherapy of tumors. Cancer
Res. 57:1419–1424. 1997.PubMed/NCBI
|
4
|
Heimberger AB, Crotty LE, Archer GE, et
al: Epidermal growth factor receptor VIII peptide vaccination is
efficacious against established intracerebral tumors. Clin Cancer
Res. 9:4247–4254. 2003.PubMed/NCBI
|
5
|
Ciesielski MJ, Kazim AL, Barth RF and
Fenstermaker RA: Cellular antitumor immune response to a branched
lysine multiple antigenic peptide containing epitopes of a common
tumor-specific antigen in a rat glioma model. Cancer Immunol
Immunother. 54:107–119. 2005. View Article : Google Scholar
|
6
|
Paine R, Gaposchkin D, Kelly C and
Wilcoxen SE: Regulation of cytokeratin expression in rat lung
alveolar epithelial cells in vitro. Am J Physiol. 269:L536–L544.
1995.PubMed/NCBI
|
7
|
Kosacka M and Jankowska R: The prognostic
value of cytokeratin 19 expression in non-small cell lung cancer.
Pneumonol Alergol Pol. 75:317–323. 2007.In Polish.
|
8
|
Overwijk WW, Tsung A, Irvine KR, et al:
gp100/pmel 17 is a murine tumor rejection antigen: Induction of
'self'-reactive, tumoricidal T cells using high-affinity, altered
peptide ligand. J Exp Med. 188:277–286. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Banchereau J and Steinman RM: Dendritic
cells and the control of immunity. Nature. 392:245–252. 1998.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Steinman RM and Dhodapkar M: Active
immunization against cancer with dendritic cells: The near future.
Int J Cancer. 94:459–473. 2001. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Nyberg-Hoffman C, Shabram P, Li W, Giroux
D and Aguilar-Cordova E: Sensitivity and reproducibility in
adenoviral infectious titer determination. Nat Med. 3:808–811.
1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Morelli AE, Larregina AT, Ganster RW, et
al: Recombinant adenovirus induces maturation of dendritic cells
via an NF-kappaB-dependent pathway. J Virol. 74:9617–9628. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang AY, Golumbek P, Ahmadzadeh M, et al:
Role of bone marrow-derived cells in presenting MHC class
I-restricted tumor antigens. Science. 264:961–965. 1994. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sharma S, Stolina M, Luo J, et al:
Secondary lymphoid tissue chemokine mediates T cell-dependent
antitumor responses in vivo. J Immunol. 164:4558–4563. 2000.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Fields RC, Shimizu K and Mulé JJ: Murine
dendritic cells pulsed with whole tumor lysates mediate potent
antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci
USA. 95:9482–9487. 1998. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schnurr M, Galambos P, Scholz C, et al:
Tumor cell lysate-pulsed human dendritic cells induce a T-cell
response against pancreatic carcinoma cells: An in vitro model for
the assessment of tumor vaccines. Cancer Res. 61:6445–6450.
2001.PubMed/NCBI
|
17
|
Mitchell MS, Harel W, Kan-Mitchell J, et
al: Active specific immunotherapy of melanoma with allogeneic cell
lysates. Rationale, results, and possible mechanisms of action. Ann
NY Acad Sci. 690:153–166. 1993. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kirk CJ and Mulé JJ: Gene-modified
dendritic cells for use in tumor vaccines. Hum Gene Ther.
11:797–806. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Klein C, Bueler H and Mulligan RC:
Comparative analysis of genetically modified dendritic cells and
tumor cells as therapeutic cancer vaccines. J Exp Med.
191:1699–1708. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim S, Lee JB, Lee GK and Chang J:
Vaccination with recombinant adenoviruses and dendritic cells
expressing prostate-specific antigens is effective in eliciting CTL
and suppresses tumor growth in the experimental prostate cancer.
Prostate. 69:938–948. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Song W, Kong HL, Carpenter H, Torii H,
Granstein R, Rafii S, Moore MA and Crystal RG: Dendritic cells
genetically modified with an adenovirus vector encoding the cDnA
for a model antigen induce protective and therapeutic antitumor
immunity. J Exp Med. 186:1247–1256. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ribas A, Butterfield LH, Hu B, et al:
Generation of T-cell immunity to a murine melanoma using
MART-1-engineered dendritic cells. J Immunother. 23:59–66. 2000.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kaplan JM, Yu Q, Piraino ST, et al:
Induction of antitumor immunity with dendritic cells transduced
with adenovirus vector-encoding endogenous tumor-associated
antigens. J Immunol. 163:699–707. 1999.PubMed/NCBI
|
24
|
Cho HI, Kim HJ, Oh ST and Kim TG: In vitro
induction of carcinoembryonic antigen (CEA)-specific cytotoxic T
lymphocytes by dendritic cells transduced with recombinant
adenoviruses. Vaccine. 22:224–236. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhou Q, Guo AL, Xu CR, An SJ, Wang Z, Yang
SQ and Wu YL: A dendritic cell-based tumour vaccine for lung
cancer: Full-length XAGE-1b protein-pulsed dendritic cells induce
specific cytotoxic T lymphocytes in vitro. Clin Exp Immunol.
153:392–400. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xie J, Xiong L, Tao X, Li X, Su Y, Hou X
and Shi H: Antitumor effects of murine bone marrow-derived
dendritic cells infected with xenogeneic livin alpha recombinant
adenoviral vectors against Lewis lung carcinoma. Lung Cancer.
68:338–345. 2010. View Article : Google Scholar
|
27
|
Rea D, Schagen FH, Hoeben RC, et al:
Adenoviruses activate human dendritic cells without polarization
toward a T-helper type 1-inducing subset. J Virol. 73:10245–10253.
1999.PubMed/NCBI
|
28
|
Jonuleit H, Tüting T, Steitz J, et al:
Efficient transduction of mature CD83+ dendritic cells
using recombinant adenovirus suppressed T cell stimulatory
capacity. Gene Ther. 7:249–254. 2000. View Article : Google Scholar : PubMed/NCBI
|
29
|
Miller G, Lahrs S, Shah AB and DeMatteo
RP: Optimization of dendritic cell maturation and gene transfer by
recombinant adenovirus. Cancer Immunol Immunother. 52:347–358.
2003.PubMed/NCBI
|
30
|
Yang Y, Li Q, Ertl HC and Wilson JM:
Cellular and humoral immune responses to viral antigens create
barriers to lung-directed gene therapy with recombinant
adenoviruses. J Virol. 69:2004–2015. 1995.PubMed/NCBI
|
31
|
Zhong LP, Zhao SF, Chen GF, Ping FY, Xu ZF
and Hu JA: Increased levels of CK19 mRnA in oral squamous cell
carcinoma tissue detected by relative quantification with real-time
polymerase chain reaction. Arch Oral Biol. 51:1112–1119. 2006.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Galus R and Wodarski K: Importance of the
cytokeratins in cancer diagnosis. Pol Merk Lek. 135:209–211.
2007.
|
33
|
Xenidis N, Ignatiadis M, Apostolaki S, et
al: Cytokeratin-19 mRnA-positive circulating tumor cells after
adjuvant chemotherapy in patients with early breast cancer. J Clin
Oncol. 27:2177–2184. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Van Trappen Po, Gyselman VG, Lowe DG, et
al: Molecular quantification and mapping of lymph-node
micrometastases in cervical cancer. Lancet. 357:15–20. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Visser M, Jiwa M, Horstman A, et al:
Intra-operative rapid diagnostic method based on CK19 mRnA
expression for the detection of lymph node metastases in breast
cancer. Int J Cancer. 122:2562–2567. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen TF, Jiang GL, Fu XL, Wang LJ, Qian H,
Wu KL and Zhao S: CK19 mRnA expression measured by
reverse-transcription polymerase chain reaction (RT-PCR) in the
peripheral blood of patients with non-small cell lung cancer
treated by chemoradiation: An independent prognostic factor. Lung
Cancer. 56:105–114. 2007. View Article : Google Scholar
|
37
|
van Sprundel RG, van den Ingh TS, Desmet
VJ, et al: Keratin 19 marks poor differentiation and a more
aggressive behaviour in canine and human hepatocellular tumours.
Comp Hepatol. 9:42010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ohshio G, Imamura T, Okada N, Yamaki K,
Suwa H, Imamura M and Sakahara H: Cytokeratin 19 fragment in serum
and tissues of patients with pancreatic diseases. Int J Pancreatol.
21:235–241. 1997. View Article : Google Scholar : PubMed/NCBI
|
39
|
Steitz J, Brück J, Steinbrink K, Enk A,
Knop J and Tüting T: Genetic immunization of mice with human
tyrosinase-related protein 2: Implications for the immunotherapy of
melanoma. Int J Cancer. 86:89–94. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fenstermaker RA and Ciesielski MJ:
Immunotherapeutic strategies for malignant glioma. Cancer Control.
11:181–191. 2004.PubMed/NCBI
|