1
|
Thakkar JP, Dolecek TA, Horbinski C,
Ostrom QT, Lightner DD, Barnholtz-Sloan JS and Villano JL:
Epidemiologic and molecular prognostic review of glioblastoma.
Cancer Epidemiol Biomarkers Prev. 23:1985–1996. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stewart LA: Chemotherapy in adult
high-grade glioma: A systematic review and meta-analysis of
individual patient data from 12 randomised trials. Lancet.
359:1011–1018. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mellman I, Coukos G and Dranoff G: Cancer
immunotherapy comes of age. Nature. 480:480–489. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Agrawal NS, Miller R Jr, Lal R, Mahanti H,
Dixon-Mah YN, DeCandio ML, Vandergrift WA III, Varma AK, Patel SJ,
Banik NL, et al: Current studies of immunotherapy on glioblastoma.
J Neurol Neurosurg. 1:210001042014.PubMed/NCBI
|
5
|
Bonavia R, Inda MM, Cavenee WK and Furnari
FB: Heterogeneity maintenance in glioblastoma: A social network.
Cancer Res. 71:4055–4060. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gyorki DE, Spillane J, Speakman D,
Shackleton M and Henderson MA: Current management of advanced
melanoma: A transformed landscape. ANZ J Surg. 84:612–617. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Escudier B and Albiges L: Pazopanib for
the treatment of advanced renal cell cancer. Expert Opin Orphan
Drugs. 2:605–616. 2014. View Article : Google Scholar
|
8
|
Capietto AH, Keirallah S, Gross E, Dauguet
N, Laprévotte E, Jean C, Gertner-Dardenne J, Bezombes C,
Quillet-Mary A, Poupot M, et al: Emerging concepts for the
treatment of hematological malignancies with therapeutic monoclonal
antibodies. Curr Drug Targets. 11:790–800. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Neyns B, Sadones J, Joosens E, Bouttens F,
Verbeke L, Baurain JF, D'Hondt L, Strauven T, Chaskis C, In't Veld
P, et al: Stratified phase II trial of cetuximab in patients with
recurrent high-grade glioma. Ann Oncol. 20:1596–1603. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hishii M, Nitta T, Ebato M, Okumura K and
Sato K: Targeting therapy for glioma by LAK cells coupled with
bispecific antibodies. J Clin Neurosci. 1:261–265. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jacobs SK, Wilson DJ, Melin G, Parham CW,
Holcomb B, Kornblith PL and Grimm EA: Interleukin-2 and lymphokine
activated killer (LAK) cells in the treatment of malignant glioma:
Clinical and experimental studies. Neurol Res. 8:81–87.
1986.PubMed/NCBI
|
12
|
Dillman RO, Duma CM, Schiltz PM, DePriest
C, Ellis RA, Okamoto K, Beutel LD, De Leon C and Chico S:
Intracavitary placement of autologous lymphokine-activated killer
(LAK) cells after resection of recurrent glioblastoma. J
Immunother. 27:398–404. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pfosser A, Brandl M, Salih H,
Grosse-Hovest L and Jung G: Role of target antigen in
bispecific-antibody-mediated killing of human glioblastoma cells: A
pre-clinical study. Int J Cancer. 80:612–616. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang I, Tihan T, Han SJ, Wrensch MR,
Wiencke J, Sughrue ME and Parsa AT: CD8+ T-cell
infiltrate in newly diagnosed glioblastoma is associated with
long-term survival. J Clin Neurosci. 17:1381–1385. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Waziri A, Killory B, Ogden AT III, Canoll
P, Anderson RC, Kent SC, Anderson DE and Bruce JN: Preferential in
situ CD4+CD56+ T cell activation and
expansion within human glioblastoma. J Immunol. 180:7673–7680.
2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yankelevich M, Kondadasula SV, Thakur A,
Buck S, Cheung NK and Lum LG: Anti-CD3 x anti-GD2 bispecific
antibody redirects T-cell cytolytic activity to neuroblastoma
targets. Pediatr Blood Cancer. 59:1198–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Henriquez NV, van Overveld PG, Que I,
Buijs JT, Bachelier R, Kaijzel EL, Löwik CW, Clezardin P and van
der Pluijm G: Advances in optical imaging and novel model systems
for cancer metastasis research. Clin Exp Metastasis. 24:699–705.
2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hontscha C, Borck Y, Zhou H, Messmer D and
Schmidt-Wolf IG: Clinical trials on CIK cells: First report of the
international registry on CIK cells (IRCC). J Cancer Res Clin
Oncol. 137:305–310. 2011. View Article : Google Scholar
|
19
|
Han H, Liu Q, He W, Ong K, Liu X and Gao
B: An efficient vector system to modify cells genetically. PLoS
One. 6:e263802011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume
KG and Weissman IL: Use of a SCID mouse/human lymphoma model to
evaluate cytokine-induced killer cells with potent antitumor cell
activity. J Exp Med. 174:139–149. 1991. View Article : Google Scholar : PubMed/NCBI
|
21
|
Han H, Ma J, Zhang K, Li W, Liu C, Zhang
Y, Zhang G, Ma P, Wang L, Zhang G, et al: Bispecific
anti-CD3xanti-HER2 antibody mediates T cell cytolytic activity to
HER2-positive colorectal cancer in vitro and in vivo. Int J Oncol.
45:2446–2454. 2014.PubMed/NCBI
|
22
|
Ma J, Han H, Liu D, Li W, Feng H, Xue X,
Wu X, Niu G, Zhang G, Zhao Y, et al: HER2 as a promising target for
cytotoxicity T cells in human melanoma therapy. PLoS One.
8:e732612013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fu X, Tao L, Rivera A, Williamson S, Song
XT, Ahmed N and Zhang X: A simple and sensitive method for
measuring tumor-specific T cell cytotoxicity. PLoS One.
5:e118672010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Padfield E, Ellis HP and Kurian KM:
Current therapeutic advances targeting EGFR and EGFRvIII in
glioblastoma. Front Oncol. 5:52015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Reusch U, Sundaram M, Davol PA, Olson SD,
Davis JB, Demel K, Nissim J, Rathore R, Liu PY and Lum LG: Anti-CD3
x anti-epidermal growth factor receptor (EGFR) bispecific antibody
redirects T-cell cytolytic activity to EGFR-positive cancers in
vitro and in an animal model. Clin Cancer Res. 12:183–190. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Jäkel CE, Vogt A, Gonzalez-Carmona MA and
Schmidt-Wolf IG: Clinical studies applying cytokine-induced killer
cells for the treatment of gastrointestinal tumors. J Immunol Res.
2014:8972142014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Badr CE and Tannous BA: Bioluminescence
imaging: Progress and applications. Trends Biotechnol. 29:624–633.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nogawa M, Yuasa T, Kimura S, Kuroda J,
Sato K, Segawa H, Yokota A and Maekawa T: Monitoring
luciferase-labeled cancer cell growth and metastasis in different
in vivo models. Cancer Lett. 217:243–253. 2005. View Article : Google Scholar
|
29
|
Tiffen JC, Bailey CG, Ng C, Rasko JE and
Holst J: Luciferase expression and bioluminescence does not affect
tumor cell growth in vitro or in vivo. Mol Cancer. 9:2992010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Patel MA, Kim JE, Ruzevick J, Li G and Lim
M: The future of glioblastoma therapy: Synergism of standard of
care and immunotherapy. Cancers (Basel). 6:1953–1985. 2014.
View Article : Google Scholar
|
31
|
Keeren K, Friedrich M, Gebuhr I, Philipp
S, Sabat R, Sterry W, Brandt C, Meisel C, Grütz G, Volk HD, et al:
Expression of tolerance associated gene-1, a mitochondrial protein
inhibiting T cell activation, can be used to predict response to
immune modulating therapies. J Immunol. 183:4077–4087. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Swaika A, Hammond WA and Joseph RW:
Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy.
Mol Immunol. Mar 4–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
33
|
Suzuki M and Cheung NK: Disialoganglioside
GD2 as a therapeutic target for human diseases. Expert Opin Ther
Targets. 19:349–362. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou Z, Luther N, Ibrahim GM, Hawkins C,
Vibhakar R, Handler MH and Souweidane MM: B7-H3, a potential
therapeutic target, is expressed in diffuse intrinsic pontine
glioma. J Neurooncol. 111:257–264. 2013. View Article : Google Scholar
|