1
|
Kamangar F, Dores GM and Anderson WF:
Patterns of cancer incidence, mortality, and prevalence across five
continents: Defining priorities to reduce cancer disparities in
different geographic regions of the world. J Clin oncol.
24:2137–2150. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: Epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
El-Serag HB: Epidemiology of viral
hepatitis and hepatocellular carcinoma. Gastroenterology.
142:1264–1273. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gao J, Xie L, Yang WS, Zhang W, Gao S,
Wang J and Xiang YB: Risk factors of hepatocellular carcinoma -
current status and perspectives. Asian Pac J Cancer Prev.
13:743–752. 2012. View Article : Google Scholar
|
5
|
Jemal A, Murray T, Ward E, Samuels A,
Tiwari RC, Ghafoor A, Feuer EJ and Thun MJ: Cancer statistics,
2005. CA Cancer J Clin. 55:10–30. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sakamoto M: Early HCC: Diagnosis and
molecular markers. J Gastroenterol. 44(Suppl 19): 108–111. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Portolani N, Coniglio A, Ghidoni S,
Giovanelli M, Benetti A, Tiberio GA and Giulini SM: Early and late
recurrence after liver resection for hepatocellular carcinoma:
Prognostic and therapeutic implications. Ann Surg. 243:229–235.
2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Giordano S and Columbano A: Met as a
therapeutic target in HCC: Facts and hopes. J Hepatol. 60:442–452.
2014. View Article : Google Scholar
|
9
|
Llovet JM and Bruix J: Molecular targeted
therapies in hepatocellular carcinoma. Hepatology. 48:1312–1327.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Newell P, Villanueva A and Llovet JM:
Molecular targeted therapies in hepatocellular carcinoma: From
pre-clinical models to clinical trials. J Hepatol. 49:1–5. 2008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Azoulay D: Resection for hepatocellular
carcinoma with hepatic vein tumour thrombus: Pushing the limits
beyond the guidelines frontiers. J Hepatol. 61:462–463. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Cucchetti A, Djulbegovic B, Tsalatsanis A,
Vitale A, Hozo I, Piscaglia F, Cescon M, Ercolani G, Tuci F, Cillo
U, et al: When to perform hepatic resection for intermediate-stage
hepatocellular carcinoma. Hepatology. 61:905–914. 2015. View Article : Google Scholar
|
13
|
Borodovsky A, Kessler BM, Casagrande R,
Overkleeft HS, Wilkinson KD and Ploegh HL: A novel active
site-directed probe specific for deubiquitylating enzymes reveals
proteasome association of USP14. EMBO J. 20:5187–5196. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hu M, Li P, Song L, Jeffrey PD, Chenova
TA, Wilkinson KD, Cohen RE and Shi Y: Structure and mechanisms of
the proteasome-associated deubiquitinating enzyme USP14. EMBO J.
24:3747–3756. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Peth A, Besche HC and Goldberg AL:
Ubiquitinated proteins activate the proteasome by binding to
Usp14/Ubp6, which causes 20S gate opening. Mol Cell. 36:794–804.
2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Glickman MH and Ciechanover A: The
ubiquitin-proteasome proteolytic pathway: Destruction for the sake
of construction. Physiol Rev. 82:373–428. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kimura Y, Yashiroda H, Kudo T, Koitabashi
S, Murata S, Kakizuka A and Tanaka K: An inhibitor of a
deubiquitinating enzyme regulates ubiquitin homeostasis. Cell.
137:549–559. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Love KR, Catic A, Schlieker C and Ploegh
HL: Mechanisms, biology and inhibitors of deubiquitinating enzymes.
Nat Chem Biol. 3:697–705. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sheaff RJ, Singer JD, Swanger J,
Smitherman M, Roberts JM and Clurman BE: Proteasomal turnover of
p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell.
5:403–410. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Maki CG, Huibregtse JM and Howley PM: In
vivo ubiquitination and proteasome-mediated degradation of p53(1).
Cancer Res. 56:2649–2654. 1996.PubMed/NCBI
|
21
|
Huang TT, Nijman SM, Mirchandani KD,
Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R and
D'Andrea AD: Regulation of monoubiquitinated PCNA by DUB
autocleavage. Nat Cell Biol. 8:339–347. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schwickart M, Huang X, Lill JR, Liu J,
Ferrando R, French DM, Maecker H, O'Rourke K, Bazan F,
Eastham-Anderson J, et al: Deubiquitinase USP9X stabilizes MCL1 and
promotes tumour cell survival. Nature. 463:103–107. 2010.
View Article : Google Scholar
|
23
|
Popov N, Wanzel M, Madiredjo M, Zhang D,
Beijersbergen R, Bernards R, Moll R, Elledge SJ and Eilers M: The
ubiquitin-specific protease USP28 is required for MYC stability.
Nat Cell Biol. 9:765–774. 2007. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y,
Keough S, Wong M, Rowitch D and Bonni A: A centrosomal Cdc20-APC
pathway controls dendrite morphogenesis in postmitotic neurons.
Cell. 136:322–336. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ishiwata S, Ozawa Y, Katayama J, Kaneko S,
Shindo H, Tomioka Y, Ishiwata T, Asano G, Ikegawa S and Mizugaki M:
Elevated expression level of 60-kDa subunit of tRNA-guanine
transglycosylase in colon cancer. Cancer Lett. 212:113–119. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shinji S, Naito Z, Ishiwata S, Ishiwata T,
Tanaka N, Furukawa K, Suzuki H, Seya T, Matsuda A, Katsuta M, et
al: Ubiquitin-specific protease 14 expression in colorectal cancer
is associated with liver and lymph node metastases. Oncol Rep.
15:539–543. 2006.PubMed/NCBI
|
27
|
Wada T, Yamashita Y, Saga Y, Takahashi K,
Koinuma K, Choi YL, Kaneda R, Fujiwara S, Soda M, Watanabe H, et
al: Screening for genetic abnormalities involved in ovarian carcino
genesis using retroviral expression libraries. Int J Oncol.
35:973–976. 2009.PubMed/NCBI
|
28
|
Wu N, Liu C, Bai C, Han YP, Cho WC and Li
Q: Overexpression of deubiquitinating enzyme USP14 in lung
adenocarcinoma promotes proliferation through the accumulation of
β-catenin. Int J Mol Sci. 14:10749–10760. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chuensumran U, Saelee P, Punyarit P,
Wongkham S, Pairojkul C, Chauin S and Petmitr S: Ubiquitin-specific
protease 14 expression associated with intrahepatic
cholangiocarcinoma cell differentiation. Asian Pac J Cancer Prev.
12:775–779. 2011.PubMed/NCBI
|
30
|
Zhang C, Ling Y, Zhang C, Xu Y, Gao L, Li
R, Zhu J, Fan L and Wei L: The silencing of RECK gene is associated
with promoter hypermethylation and poor survival in hepatocellular
carcinoma. Int J Biol Sci. 8:451–458. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dong LW, Hou YJ, Tan YX, Tang L, Pan YF,
Wang M and Wang HY: Prognostic significance of Beclin 1 in
intrahepatic cholangiocellular carcinoma. Autophagy. 7:1222–1229.
2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang Q, Tan YX, Ren YB, Dong LW, Xie ZF,
Tang L, Cao D, Zhang WP, Hu HP and Wang HY: Zinc finger protein
ZBTB20 expression is increased in hepatocellular carcinoma and
associated with poor prognosis. BMC Cancer. 11:2712011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jung H, Kim BG, Han WH, Lee JH, Cho JY,
Park WS, Maurice MM, Han JK, Lee MJ, Finley D, et al:
Deubiquitination of Dishevelled by Usp14 is required for Wnt
signaling. Oncogenesis. 2:e642013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Germano D and Daniele B: Systemic therapy
of hepatocellular carcinoma: Current status and future
perspectives. World J Gastroenterol. 20:3087–3099. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ishiwata S, Katayama J, Shindo H, Ozawa Y,
Itoh K and Mizugaki M: Increased expression of queuosine
synthesizing enzyme, tRNA-guanine transglycosylase, and queuosine
levels in tRNA of leukemic cells. J Biochem. 129:13–17. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
D'Arcy P, Brnjic S, Olofsson MH, Fryknäs
M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson
R, et al: Inhibition of proteasome deubiquitinating activity as a
new cancer therapy. Nat Med. 17:1636–1640. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee BH, Lee MJ, Park S, Oh DC, Elsasser S,
Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, et al: Enhancement
of proteasome activity by a small-molecule inhibitor of USP14.
Nature. 467:179–184. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu N, Li X, Huang H, Zhao C, Liao S, Yang
C, Liu S, Song W, Lu X, Lan X, et al: Clinically used antirheumatic
agent auranofin is a proteasomal deubiquitinase inhibitor and
inhibits tumor growth. Oncotarget. 5:5453–5471. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen X, Shi X, Zhao C, Li X, Lan X, Liu S,
Huang H, Liu N, Liao S, Zang D, et al: Anti-rheumatic agent
auranofin induced apoptosis in chronic myeloid leukemia cells
resistant to imatinib through both Bcr/Abl-dependent and
-independent mechanisms. Oncotarget. 5:9118–9132. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nakayama KI and Nakayama K: Ubiquitin
ligases: cell-cycle control and cancer. Nat Rev cancer. 6:369–381.
2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Husdal A, Bukholm G and Bukholm IR: The
prognostic value and overexpression of cyclin A is correlated with
gene amplification of both cyclin A and cyclin E in breast cancer
patient. Cell Oncol. 28:107–116. 2006.PubMed/NCBI
|
42
|
Nauman A, Turowska O, Poplawski P, Master
A, Tanski Z and Puzianowska-Kuznicka M: Elevated cyclin E level in
human clear cell renal cell carcinoma: Possible causes and
consequences. Acta Biochim Pol. 54:595–602. 2007.PubMed/NCBI
|
43
|
Chang KC, Chang Y, Jones D and Su IJ:
Aberrant expression of cyclin a correlates with morphogenesis of
reed-sternberg cells in Hodgkin lymphoma. Am J Clin Pathol.
132:50–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cooley A, Zelivianski S and Jeruss JS:
Impact of cyclin E overexpression on Smad3 activity in breast
cancer cell lines. Cell Cycle. 9:4900–4907. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang LH, Huang W, Lai MD and Su IJ:
Aberrant cyclin A expression and centrosome overduplication induced
by hepatitis B virus pre-S2 mutants and its implication in
hepatocarcinogenesis. Carcinogenesis. 33:466–472. 2012. View Article : Google Scholar
|
46
|
Freije A, Ceballos L, Coisy M, Barnes L,
Rosa M, De Diego E, Blanchard JM and Gandarillas A: Cyclin E drives
human keratinocyte growth into differentiation. Oncogene.
31:5180–5192. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Richardson PG, Barlogie B, Berenson J,
Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina
M, Alexanian R, et al: A phase 2 study of bortezomib in relapsed,
refractory myeloma. N Engl J Med. 348:2609–2617. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Thompson JL: Carfilzomib: A
second-generation proteasome inhibitor for the treatment of
relapsed and refractory multiple myeloma. Ann Pharmacother.
47:56–62. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Richardson PG, Mitsiades C, Hideshima T
and Anderson KC: Bortezomib: Proteasome inhibition as an effective
anticancer therapy. Annu Rev Med. 57:33–47. 2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Cavo M: Proteasome inhibitor bortezomib
for the treatment of multiple myeloma. Leukemia. 20:1341–1352.
2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Liu N, Liu C, Li X, Liao S, Song W, Yang
C, Zhao C, Huang H, Guan L, Zhang P, et al: A novel proteasome
inhibitor suppresses tumor growth via targeting both 19S proteasome
deubiquitinases and 20S proteolytic peptidases. Sci Rep.
4:52402014.PubMed/NCBI
|