1
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar
|
2
|
Park SH, Song CW, Kim YB, Kim YS, Chun HR,
Lee JH, Seol WJ, Yoon HS, Lee MK, Lee JH, et al:
Clinicopathological characteristics of colon cancer diagnosed at
primary health care institutions. Intest Res. 12:131–138. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lee CK: Clinicopathological
characteristics of newly diagnosed colorectal cancers in community
gastroenterology practice. Intest Res. 12:87–89. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Riethdorf S, Wikman H and Pantel K:
Review: Biological relevance of disseminated tumor cells in cancer
patients. Int J Cancer. 123:1991–2006. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chambers AF, Groom AC and MacDonald IC:
Dissemination and growth of cancer cells in metastatic sites. Nat
Rev Cancer. 2:563–572. 2002. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Kim ER and Kim YH: Clinical application of
genetics in management of colorectal cancer. Intest Res.
12:184–193. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu WM and Zhang XA: KAI1/CD82, a tumor
metastasis suppressor. Cancer Lett. 240:183–194. 2006. View Article : Google Scholar
|
8
|
Miranti CK: Controlling cell surface
dynamics and signaling: How CD82/KAI1 suppresses metastasis. Cell
Signal. 21:196–211. 2009. View Article : Google Scholar
|
9
|
Guo XZ, Friess H, Di Mola FF, Heinicke JM,
Abou-Shady M, Graber HU, Baer HU, Zimmermann A, Korc M and Büchler
MW: KAI1, a new metastasis suppressor gene, is reduced in
metastatic hepatocellular carcinoma. Hepatology. 28:1481–1488.
1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dong JT, Suzuki H, Pin SS, Bova GS,
Schalken JA, Isaacs WB, Barrett JC and Isaacs JT: Down-regulation
of the KAI1 metastasis suppressor gene during the progression of
human prostatic cancer infrequently involves gene mutation or
allelic loss. Cancer Res. 56:4387–4390. 1996.PubMed/NCBI
|
11
|
Adachi M, Taki T, Ieki Y, Huang CL,
Higashiyama M and Miyake M: Correlation of KAI1/CD82 gene
expression with good prognosis in patients with non-small cell lung
cancer. Cancer Res. 56:1751–1755. 1996.PubMed/NCBI
|
12
|
Schindl M, Birner P, Breitenecker G and
Oberhuber G: Down-regulation of KAI1 metastasis suppressor protein
is associated with a dismal prognosis in epithelial ovarian cancer.
Gynecol Oncol. 83:244–248. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Su JS, Arima K, Hasegawa M, Franco OE,
Umeda Y, Yanagawa M, Sugimura Y and Kawamura J: Decreased
expression of KAI1 metastasis suppressor gene is a recurrence
predictor in primary pTa and pT1 urothelial bladder carcinoma. Int
J Urol. 11:74–82. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee JH, Seo YW, Park SR, Kim YJ and Kim
KK: Expression of a splice variant of KAI1, a tumor metastasis
suppressor gene, influences tumor invasion and progression. Cancer
Res. 63:7247–7255. 2003.PubMed/NCBI
|
15
|
Lee JH, Park SR, Chay KO, Seo YW, Kook H,
Ahn KY, Kim YJ and Kim KK: KAI1 COOH-terminal interacting
tetraspanin (KITENIN), a member of the tetraspanin family,
interacts with KAI1, a tumor metastasis suppressor, and enhances
metastasis of cancer. Cancer Res. 64:4235–4243. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee JH, Cho ES, Kim MY, Seo YW, Kho DH,
Chung IJ, Kook H, Kim NS, Ahn KY and Kim KK: Suppression of
progression and metastasis of established colon tumors in mice by
intravenous delivery of short interfering RNA targeting KITENIN, a
metastasis-enhancing protein. Cancer Res. 65:8993–9003. 2005.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kho DH, Bae JA, Lee JH, Cho HJ, Cho SH,
Lee JH, Seo YW, Ahn KY, Chung IJ and Kim KK: KITENIN recruits
Dishevelled/PKC delta to form a functional complex and controls the
migration and invasiveness of colorectal cancer cells. Gut.
58:509–519. 2009. View Article : Google Scholar
|
18
|
Lee JK, Bae JA, Sun EG, Kim HD, Yoon TM,
Kim K, Lee JH, Lim SC and Kim KK: KITENIN increases invasion and
migration of mouse squamous cancer cells and promotes pulmonary
metastasis in a mouse squamous tumor model. FEBS Lett. 583:711–717.
2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cho SB, Park YL, Park SJ, Park SY, Lee WS,
Park CH, Choi SK, Heo YH, Koh YS, Cho CK, et al: KITENIN is
associated with activation of AP-1 target genes via MAPK cascades
signaling in human hepatocellular carcinoma progression. Oncol Res.
19:115–123. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ryu HS, Park YL, Park SJ, Lee JH, Cho SB,
Lee WS, Chung IJ, Kim KK, Lee KH, Kweon SS, et al: KITENIN is
associated with tumor progression in human gastric cancer.
Anticancer Res. 30:3479–3486. 2010.PubMed/NCBI
|
21
|
Lee S, Song YA, Park YL, Cho SB, Lee WS,
Lee JH, Chung IJ, Kim KK, Rew JS and Joo YE: Expression of KITENIN
in human colorectal cancer and its relation to tumor behavior and
progression. Pathol Int. 61:210–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee JK, Yoon TM, Seo DJ, Sun EG, Bae JA,
Lim SC, Choi YD, Lee JH, Joo YE and Kim KK: KAI1 COOH-terminal
interacting tetraspanin (KITENIN) expression in early and advanced
laryngeal cancer. Laryngoscope. 120:953–958. 2010.PubMed/NCBI
|
23
|
Yoon TM, Kim SA, Lee JK, Park YL, Kim GY,
Joo YE, Lee JH, Kim KK and Lim SC: Expression of KITENIN and its
association with tumor progression in oral squamous cell carcinoma.
Auris Nasus Larynx. 40:222–226. 2013. View Article : Google Scholar
|
24
|
Lee KH, Ahn EJ, Oh SJ, Kim O, Joo YE, Bae
JA, Yoon S, Ryu HH, Jung S, Kim KK, et al: KITENIN promotes glioma
invasiveness and progression, associated with the induction of EMT
and stemness markers. Oncotarget. 6:3240–3253. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mittal K, Ebos J and Rini B: Angiogenesis
and the tumor micro-environment: Vascular endothelial growth factor
and beyond. Semin Oncol. 41:235–251. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao Y and Adjei AA: Targeting
angiogenesis in cancer therapy: Moving beyond vascular endothelial
growth gactor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gomes FG, Nedel F, Alves AM, Nör JE and
Tarquinio SB: Tumor angiogenesis and lymphangiogenesis:
Tumor/endothelial crosstalk and cellular/microenvironmental
signaling mechanisms. Life Sci. 92:101–107. 2013. View Article : Google Scholar :
|
28
|
Stacker SA, Williams SP, Karnezis T,
Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic
vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Duong T, Koopman P and Francois M: Tumor
lymphangiogenesis as a potential therapeutic target. J Oncol.
2012:2049462012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Weng W, Feng J, Qin H and Ma Y: Molecular
therapy of colorectal cancer: Progress and future directions. Int J
Cancer. 136:493–502. 2015.
|
31
|
Marques I, Araújo A and de Mello RA:
Anti-angiogenic therapies for metastatic colorectal cancer: Current
and future perspectives. World J Gastroenterol. 19:7955–7971. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Royston D and Jackson DG: Mechanisms of
lymphatic metastasis in human colorectal adenocarcinoma. J Pathol.
217:608–619. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sun XF and Zhang H: Clinicopathological
significance of stromal variables: Angiogenesis, lymphangiogenesis,
inflammatory infiltration, MMP and PINCH in colorectal carcinomas.
Mol Cancer. 5:432006. View Article : Google Scholar : PubMed/NCBI
|
34
|
American Joint Committee on Cancer
Classification (AJCC): Cancer Staging Manual. 6 edition. revised.
Lippincott-Raven; Philadelphia: pp. 113–123. 2002
|
35
|
Weider N, Semple JP, Welch WR and Folkman
J: Tumor angiogenesis and metastasis - correlation in invasive
breast carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar
|
36
|
Takahashi Y, Kitadai Y, Bucana CD, Cleary
KR and Ellis LM: Expression of vascular endothelial growth factor
and its receptor, KDR, correlates with vascularity, metastasis, and
proliferation of human colon cancer. Cancer Res. 55:3964–3968.
1995.PubMed/NCBI
|
37
|
Svagzdys S, Lesauskaite V, Pavalkis D,
Nedzelskiene I, Pranys D and Tamelis A: Microvessel density as new
prognostic marker after radiotherapy in rectal cancer. BMC Cancer.
9:952009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Des Guetz G, Uzzan B, Nicolas P, Cucherat
M, Morere JF, Benamouzig R, Breau JL and Perret GY: Microvessel
density and VEGF expression are prognostic factors in colorectal
cancer. Meta-analysis of the literature. Br J Cancer. 94:1823–1832.
2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Donizy P, Rudno-Rudzinska J, Halon A,
Dziegala M, Kabarowski J, Frejlich E, Dziegiel P, Kielan W and
Matkowski R: Intratumoral but not peritumoral lymphatic vessel
density measured by D2-40 expression predicts poor outcome in
gastric cancer - ROC curve analysis to find cut-off point.
Anticancer Res. 34:3113–3118. 2014.PubMed/NCBI
|
40
|
Pula B, Wojnar A, Witkiewicz W, Dziegiel P
and Podhorska-Okolow M: Podoplanin expression in cancer-associated
fibroblasts correlates with VEGF-C expression in cancer cells of
invasive ductal breast carcinoma. Neoplasma. 60:516–524. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Gao J, Knutsen A, Arbman G, Carstensen J,
Frånlund B and Sun XF: Clinical and biological significance of
angiogenesis and lymphangiogenesis in colorectal cancer. Dig Liver
Dis. 41:116–122. 2009. View Article : Google Scholar
|
42
|
Sundov Z, Tomic S, Alfirevic S, Sundov A,
Capkun V, Nincevic Z, Nincevic J, Kunac N, Kontic M, Poljak N, et
al: Prognostic value of MVD, LVD and vascular invasion in lymph
node-negative colon cancer. Hepatogastroenterology. 60:432–438.
2013.PubMed/NCBI
|
43
|
Yan G, Zhou XY, Cai SJ, Zhang GH, Peng JJ
and Du X: Lymph-angiogenic and angiogenic microvessel density in
human primary sporadic colorectal carcinoma. World J Gastroenterol.
14:101–107. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Holmqvist A, Gao J, Adell G, Carstensen J
and Sun XF: The location of lymphangiogenesis is an independent
prognostic factor in rectal cancers with or without preoperative
radiotherapy. Ann Oncol. 21:512–517. 2010. View Article : Google Scholar
|
45
|
Jakob C, Aust DE, Liebscher B, Baretton
GB, Datta K and Muders MH: Lymphangiogenesis in regional lymph
nodes is an independent prognostic marker in rectal cancer patients
after neoadjuvant treatment. PLoS One. 6:e274022011. View Article : Google Scholar : PubMed/NCBI
|