1
|
Olnes MJ and Erlich R: A review and update
on cholangiocarcinoma. Oncology. 66:167–179. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sandhu DS, Shire AM and Roberts LR:
Epigenetic DNA hypermethylation in cholangiocarcinoma: Potential
roles in pathogenesis, diagnosis and identification of treatment
targets. Liver Int. 28:12–27. 2008. View Article : Google Scholar
|
3
|
Razumilava N and Gores GJ:
Cholangiocarcinoma. Lancet. 383:2168–2179. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rizvi S and Gores GJ: Pathogenesis,
diagnosis, and management of cholangiocarcinoma. Gastroenterology.
145:1215–1229. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu F, Yan W, Zhao ZL, Chai YB, Lu F, Wang
Q, Peng WD, Yang AG and Wang CJ: Improved PCR-based subtractive
hybridization strategy for cloning differentially expressed genes.
Biotechniques. 29:310–313. 2000.PubMed/NCBI
|
6
|
Chomez P, De Backer O, Bertrand M, De
Plaen E, Boon T and Lucas S: An overview of the MAGE gene family
with the identification of all human members of the family. Cancer
Res. 61:5544–5551. 2001.PubMed/NCBI
|
7
|
Barker PA and Salehi A: The MAGE proteins:
Emerging roles in cell cycle progression, apoptosis, and
neurogenetic disease. J Neurosci Res. 67:705–712. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bertrand M, Huijbers I, Chomez P and De
Backer O: Comparative expression analysis of the MAGED genes during
embryogenesis and brain development. Dev Dyn. 230:325–334. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Sang M, Wang L, Ding C, Zhou X, Wang B,
Wang L, Lian Y and Shan B: Melanoma-associated antigen genes - an
update. Cancer Lett. 302:85–90. 2011. View Article : Google Scholar
|
10
|
Saburi S, Nadano D, Akama TO, Hirama K,
Yamanouchi K, Naito K, Tojo H, Tachi C and Fukuda MN: The trophinin
gene encodes a novel group of MAGE proteins, magphinins, and
regulates cell proliferation during gametogenesis in the mouse. J
Biol Chem. 276:49378–49389. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Salehi AH, Roux PP, Kubu CJ, Zeindler C,
Bhakar A, Tannis LL, Verdi JM and Barker PA: NRAGE, a novel MAGE
protein, interacts with the p75 neurotrophin receptor and
facilitates nerve growth factor-dependent apoptosis. Neuron.
27:279–288. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Selimovic D, Sprenger A, Hannig M, Haïkel
Y and Hassan M: Apoptosis related protein-1 triggers melanoma cell
death via interaction with the juxtamembrane region of p75
neurotrophin receptor. J Cell Mol Med. 16:349–361. 2012. View Article : Google Scholar
|
13
|
Yan W, Li Q and Zhu F: Apoptosis-related
genes cloned by improved subtractive hybridization. Zhonghua Zhong
Liu Za Zhi. 23:193–195. 2001.In Chinese.
|
14
|
Yan W, Wang W-L, Zhu F, Cheng SQ, Li QL,
Wang L and Wang CJ: Cloning and subcellular localization of apr-1 -
a new gene of tumor specific antigen family. Ai Zheng. 24:129–134.
2005.In Chinese. PubMed/NCBI
|
15
|
Zhang Y, Li Q, Zhu F, Cui J, Li K, Li Q,
Wang R, Wang W, Wang W and Yan W: Subcellular localization of
APMCF1 and its biological significance of expression pattern in
normal and malignant human tissues. J Exp Clin Cancer Res.
28:1112009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Y, Li Q, Huang W, Zhang J, Han Z,
Wei H, Cui J, Wang Y and Yan W: Increased expression of
apoptosis-related protein 3 is highly associated with tumorigenesis
and progression of cervical squamous cell carcinoma. Hum Pathol.
44:388–393. 2013. View Article : Google Scholar
|
17
|
Robertson S, Hyder O, Dodson R, Nayar SK,
Poling J, Beierl K, Eshleman JR, Lin MT, Pawlik TM and Anders RA:
The frequency of KRAS and BRAF mutations in intrahepatic
cholangiocarcinomas and their correlation with clinical outcome.
Hum Pathol. 44:2768–2773. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yothaisong S, Dokduang H, Techasen A,
Namwat N, Yongvanit P, Bhudhisawasdi V, Puapairoj A, Riggins GJ and
Loilome W: Increased activation of PI3K/AKT signaling pathway is
associated with cholangiocarcinoma metastasis and PI3K/mTOR
inhibition presents a possible therapeutic strategy. Tumour Biol.
34:3637–3648. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Maemura K, Natsugoe S and Takao S:
Molecular mechanism of cholangiocarcinoma carcinogenesis. J
Hepatobiliary Pancreat Sci. 21:754–760. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
van der Bruggen P, Traversari C, Chomez P,
Lurquin C, De Plaen E, Van den Eynde B, Knuth A and Boon T: A gene
encoding an antigen recognized by cytolytic T lymphocytes on a
human melanoma. Science. 254:1643–1647. 1991. View Article : Google Scholar : PubMed/NCBI
|
21
|
Morgan DO: Cyclin-dependent kinases:
Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol.
13:261–291. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pagano M, Pepperkok R, Lukas J, Baldin V,
Ansorge W, Bartek J and Draetta G: Regulation of the cell cycle by
the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol.
121:101–111. 1993. View Article : Google Scholar : PubMed/NCBI
|
23
|
Merrick KA, Larochelle S, Zhang C, Allen
JJ, Shokat KM and Fisher RP: Distinct activation pathways confer
cyclin-binding specificity on Cdk1 and Cdk2 in human cells. Mol
Cell. 32:662–672. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tane S and Chibazakura T: Cyclin A
overexpression induces chromosomal double-strand breaks in
mammalian cells. Cell Cycle. 8:3900–3903. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wheeler LW, Lents NH and Baldassare JJ:
Cyclin A-CDK activity during G1 phase impairs MCM chromatin loading
and inhibits DNA synthesis in mammalian cells. Cell Cycle.
7:2179–2188. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hayles J, Beach D, Durkacz B and Nurse P:
The fission yeast cell cycle control gene cdc2: Isolation of a
sequence suc1 that suppresses cdc2 mutant function. Mol Gen Genet.
202:291–293. 1986. View Article : Google Scholar : PubMed/NCBI
|
27
|
Richardson HE, Stueland CS, Thomas J,
Russell P and Reed SI: Human cDNAs encoding homologs of the small
p34Cdc28/Cdc2-associated protein of Saccharomyces
cerevisiae and Schizosaccharomyces pombe. Genes Dev. 4:1332–1344.
1990. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ganoth D, Bornstein G, Ko TK, Larsen B,
Tyers M, Pagano M and Hershko A: The cell-cycle regulatory protein
Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat
Cell Biol. 3:321–324. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Spruck C, Strohmaier H, Watson M, Smith
AP, Ryan A, Krek TW and Reed SI: A CDK-independent function of
mammalian Cks1: Targeting of SCFSkp2 to the CDK
inhibitor p27Kip1. Mol Cell. 7:639–650. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Frontini M, Kukalev A, Leo E, Ng YM,
Cervantes M, Cheng CW, Holic R, Dormann D, Tse E, Pommier Y, et al:
The CDK subunit CKS2 counteracts CKS1 to control cyclin A/CDK2
activity in maintaining replicative fidelity and neurodevelopment.
Dev Cell. 23:356–370. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Spruck CH, de Miguel MP, Smith APL, Ryan
A, Stein P, Schultz RM, Lincoln AJ, Donovan PJ and Reed SI:
Requirement of Cks2 for the first metaphase/anaphase transition of
mammalian meiosis. Science. 300:647–650. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rother K, Dengl M, Lorenz J, Tschöp K,
Kirschner R, Mössner J and Engeland K: Gene expression of
cyclin-dependent kinase subunit Cks2 is repressed by the tumor
suppressor p53 but not by the related proteins p63 or p73. FEBS
Lett. 581:1166–1172. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liberal V, Martinsson-Ahlzén HS, Liberal
J, Spruck CH, Widschwendter M, McGowan CH and Reed SI:
Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression
overrides the DNA damage response barrier triggered by activated
oncoproteins. Proc Natl Acad Sci USA. 109:2754–2759. 2012.
View Article : Google Scholar :
|
34
|
Shen DY, Fang ZX, You P, Liu PG, Wang F,
Huang CL, Yao XB, Chen ZX and Zhang ZY: Clinical significance and
expression of cyclin kinase subunits 1 and 2 in hepatocellular
carcinoma. Liver Int. 30:119–125. 2010. View Article : Google Scholar
|
35
|
Chen R, Feng C and Xu Y: Cyclin-dependent
kinase-associated protein Cks2 is associated with bladder cancer
progression. J Int Med Res. 39:533–540. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kang MA, Kim J-T, Kim JH, Kim SY, Kim YH,
Yeom YI, Lee Y and Lee HG: Upregulation of the cycline kinase
subunit CKS2 increases cell proliferation rate in gastric cancer. J
Cancer Res Clin Oncol. 135:761–769. 2009. View Article : Google Scholar
|
37
|
Tanaka F, Matsuzaki S, Mimori K, Kita Y,
Inoue H and Mori M: Clinicopathological and biological significance
of CDC28 protein kinase regulatory subunit 2 overexpression in
human gastric cancer. Int J Oncol. 39:361–372. 2011.PubMed/NCBI
|
38
|
Menghi F, Orzan FN, Eoli M, Farinotti M,
Maderna E, Pisati F, Bianchessi D, Valletta L, Lodrini S, Galli G,
et al: DNA microarray analysis identifies CKS2 and LEPR as
potential markers of meningioma recurrence. Oncologist.
16:1440–1450. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shen DY, Zhan YH, Wang QM, Rui G and Zhang
ZM: Oncogenic potential of cyclin kinase subunit-2 in
cholangiocarcinoma. Liver Int. 33:137–148. 2013. View Article : Google Scholar
|
40
|
Cardozo T and Pagano M: The SCF ubiquitin
ligase: Insights into a molecular machine. Nat Rev Mol Cell Biol.
5:739–751. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Weissman AM: Themes and variations on
ubiquitylation. Nat Rev Mol Cell Biol. 2:169–178. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Frescas D and Pagano M: Deregulated
proteolysis by the F-box proteins SKP2 and beta-TrCP: Tipping the
scales of cancer. Nat Rev Cancer. 8:438–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hashimoto N, Yachida S, Okano K,
Wakabayashi H, Imaida K, Kurokohchi K, Masaki T, Kinoshita H,
Tominaga M, Ajiki T, et al: Immunohistochemically detected
expression of p27Kip1 and Skp2 predicts survival in
patients with intrahepatic cholangiocarcinomas. Ann Surg Oncol.
16:395–403. 2009. View Article : Google Scholar
|