Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer
- Authors:
- Haiyang Zhang
- Yanjun Qu
- Jingjing Duan
- Ting Deng
- Rui Liu
- Le Zhang
- Ming Bai
- Jialu Li
- Likun Zhou
- Tao Ning
- Hongli Li
- Shaohua Ge
- Hua Li
- Guoguang Ying
- Dingzhi Huang
- Yi Ba
-
Affiliations: Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China, Department of Gastroenterology, Tianjin First Center Hospital, Tianjin 300192, P.R. China - Published online on: November 26, 2015 https://doi.org/10.3892/or.2015.4451
- Pages: 1135-1146
This article is mentioned in:
Abstract
Fernández-Fernández FJ and Sesma P: Gastric cancer. Lancet. 374(1594): author reply. 1594–1595. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hartgrink HH, Jansen EP, van Grieken NC and van de Velde CJ: Gastric cancer. Lancet. 374:477–490. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yamaoka Y, Kato M and Asaka M: Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med. 47:1077–1083. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsugane S and Sasazuki S: Diet and the risk of gastric cancer: Review of epidemiological evidence. Gastric Cancer. 10:75–83. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bae JM, Lee EJ and Guyatt G: Citrus fruit intake and stomach cancer risk: A quantitative systematic review. Gastric Cancer. 11:23–32. 2008. View Article : Google Scholar : PubMed/NCBI | |
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 131:11–29. 2007. | |
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koturbash I, Zemp FJ, Pogribny I and Kovalchuk O: Small molecules with big effects: The role of the microRNAome in cancer and carcinogenesis. Mutat Res. 722:94–105. 2011. View Article : Google Scholar | |
Peláez N and Carthew RW: Biological robustness and the role of microRNAs: A network perspective. Curr Top Dev Biol. 99:237–255. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yang H, Zhang C, Jing Y, Wang C, Liu C, Zhang R, Wang J, Zhang J, Zen K, et al: Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci. 70:102–109. 2015. View Article : Google Scholar | |
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuang R, Ning G, Zhang C, et al: Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 58:610–618. 2012. View Article : Google Scholar | |
Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R, et al: A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 47:784–791. 2011. View Article : Google Scholar | |
Wang C, Hu J, Lu M, Gu H, Zhou X, Chen X, Zen K, Zhang CY, Zhang T, Ge J, et al: A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep. 5:76102015. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, Shi Y, Hu J, Guan X, Xia Z, et al: Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin Chem. 59:658–666. 2013. View Article : Google Scholar : PubMed/NCBI | |
Esquela-Kerscher A and Slack FJ: oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI | |
Loscalzo J, Kohane I and Barabasi AL: Human disease classification in the postgenomic era: A complex systems approach to human pathobiology. Mol Syst Biol. 3:1242007. View Article : Google Scholar : PubMed/NCBI | |
Taneja SS, Goddy G, Kibel AS, Penson DF and Wei JT: Prostate cancer detection using a novel computerized three-dimensional prostate biopsy template (Targetscan (Tm)): Results of a multi-center prospective data registry. J Urol. 181:712. 2009. View Article : Google Scholar | |
Mi H and Thomas P: PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol Biol. 563:123–140. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mi H, Guo N, Kejariwal A and Thomas PD: PANTHER version 6: Protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res. 35:D247–D252. 2007. View Article : Google Scholar | |
Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI | |
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, okuda S, Tokimatsu T, et al: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36:D480–D484. 2008. View Article : Google Scholar : | |
Han C, Yu Z, Duan Z and Kan Q: Role of microRNA-1 in human cancer and its therapeutic potentials. Biomed Res Int. 2014:4283712014. View Article : Google Scholar : PubMed/NCBI | |
Nohata N, Hanazawa T, enokida H and Seki N: microRNA-1/133a and microRNA-206/133b clusters: Dysregulation and functional roles in human cancers. Oncotarget. 3:9–21. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L, Yi M, Stephens RM, Seng V, Sheppard-Tillman H, et al: miR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene. 32:296–306. 2013. View Article : Google Scholar | |
Reid JF, Sokolova V, Zoni E, Lampis A, Pizzamiglio S, Bertan C, Zanutto S, Perrone F, Camerini T, Gallino G, et al: miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol Cancer Res. 10:504–515. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yan D, Dong XE, Chen X, Wang L, Lu C, Wang J, Qu J and Tu L: MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem. 284:29596–29604. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST and Ghoshal K: Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 283:33394–33405. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Song G, Liu M, Li X and Tang H: miRNA-1 targets fibronectin1 and suppresses the migration and invasion of the Hep2 laryngeal squamous carcinoma cell line. FEBS Lett. 585:3263–3269. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leone V, D'Angelo D, Rubio I, de Freitas PM, Federico A, Colamaio M, Pallante P, Medeiros-Neto G and Fusco A: miR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1alpha. J Clin endocrinol Metab. 96:E1388–E1398. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li D, Liu Y, Li H, Peng JJ, Tan Y, Zou Q, Song XF, Du M, Yang ZH, Tan Y, et al: MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5). FEBS Lett. 589:68–76. 2015. View Article : Google Scholar | |
Li D, Yang P, Li H, Cheng P, Zhang L, Wei D, Su X, Peng J, Gao H, Tan Y, et al: MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci. 91:440–447. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tominaga E, Yuasa K, Shimazaki S and Hijikata T: MicroRNA-1 targets Slug and endows lung cancer A549 cells with epithelial and anti-tumorigenic properties. Exp Cell Res. 319:77–88. 2013. View Article : Google Scholar | |
Jung YJ, Kim JW, Park SJ, Min By, Jang ES, Kim NY, Jeong SH, Shin CM, Lee SH, Park YS, et al: c-Myc-mediated overexpression of miR-17-92 suppresses replication of hepatitis B virus in human hepatoma cells. J Med Virol. 85:969–978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR, Wu TS, Lin SK, Kuo My and Tan CT: MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral oncol. 49:923–931. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fan MQ, Huang CB, Gu Y, Xiao Y, Sheng JX and Zhong L: Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. J Exp Clin Cancer Res. 32:212013. View Article : Google Scholar : PubMed/NCBI | |
No authors listed. miR-20a facilitates metastasis of osteosarcoma cells to lung tissue. Bonekey Rep. 1:762012.PubMed/NCBI | |
Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M and Enokida H: Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol. 10:396–404. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang Z, Yu M, Li L, Du G, Xiao W and Yang H: Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (eGR2). Int J Mol Sci. 14:16226–16239. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li X, Pan JH, Song B, Xiong EQ, Chen ZW, Zhou ZS and Su YP: Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 13:890–898. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Yao DS, Chen JY and Ding N: Aberrant expression of miR-20a and miR-203 in cervical cancer. Asian Pac J Cancer Prev. 14:2289–2293. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Yao D, Chen J, Ding N and Ren F: miR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One. 10:e01209052015. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Liu R, Luo C, Zhou X, Xia K, Chen X, Zhou M, Zou Q, Cao P and Cao K: miR-20a inhibits cutaneous squamous cell carcinoma metastasis and proliferation by directly targeting LIMK1. Cancer Biol Ther. 15:1340–1349. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Liu M, Li Y, Nie Y, Mi Q and Zhao S: ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell Mol Immunol. 11:495–502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Wu J, Liu W, Zuo Y, Chen S, Zhang S, Zeng M and Huang W: MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther. 21:1723–1734. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guttilla IK and White BA: Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 284:23204–23216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li J, Fei BY, Shao D, Pan Y, Mo ZH, Sun BZ, Zhang D, Zheng X, Zhang M, et al: miR-27a promotes hepatocellular carcinoma cell proliferation through suppression of its target gene peroxisome proliferator-activated receptor γ. Chin Med J (Engl). 128:941–947. 2015. View Article : Google Scholar | |
Acunzo M, Romano G, Palmieri D, Laganá A, Garofalo M, Balatti V, Drusco A, Chiariello M, Nana-Sinkam P and Croce CM: Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci USA. 110:8573–8578. 2013. View Article : Google Scholar : PubMed/NCBI | |
Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM and Aqeilan RI: miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 6:4920–4935. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng H, Wang X, Zhang P, Sun T, Ren X and Xia Z: miR-27a promotes cell proliferation and metastasis in renal cell carcinoma. Int J Clin exp Pathol. 8:2259–2266. 2015.PubMed/NCBI | |
Chen Z, Ma T, Huang C, Zhang L, Lv X, Xu T, Hu T and Li J: miR-27a modulates the MDR1/P-glycoprotein expression by inhibiting FZD7/β-catenin pathway in hepatocellular carcinoma cells. Cell Signal. 25:2693–2701. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Bai H and Hu H: rs11671784 G/A variation in miR-27a decreases chemo-sensitivity of bladder cancer by decreasing miR-27a and increasing the target RUNX-1 expression. Biochem Biophys Res Commun. 458:321–327. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L and Wang Z: miR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol oncol. 119:125–130. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Miyata H, Sugimura K, Fukuda S, Kanemura T, Yamashita K, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, et al: miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 36:894–903. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Li M, Han Y, Hong L, Gong T, Sun L and Zheng X: Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig Dis Sci. 55:2545–2551. 2010. View Article : Google Scholar | |
Zhao X, Yang L and Hu J: Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res. 30:552011. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Wu H, Liu X, evans BR, Medina DJ, Liu CG and Yang JM: Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 76:582–588. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ren YQ, Fu F and Han J: miR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27. Med Sci Monit. 21:1297–1303. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kariya A, Furusawa Y, Yunoki T, Kondo T and Tabuchi Y: A microRNA-27a mimic sensitizes human oral squamous cell carcinoma HSC-4 cells to hyperthermia through downregulation of Hsp110 and Hsp90. Int J Mol Med. 34:334–340. 2014.PubMed/NCBI | |
Coutinho-Camillo CM, Lourenço SV, de Araújo Lima L, Kowalski LP and Soares FA: expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Genet. 208:382–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hong JH, Roh KS, Suh SS, Lee S, Sung SW, Park JK, Byun JH and Kang JH: The expression of microRNA-34a is inversely correlated with c- MET and CDK6 and has a prognostic significance in lung adenocarcinoma patients. Tumour Biol. Jun 25–2015, (Epub ahead of print) http://dx.doi.org/10.1007/s13277-015-3428-9. View Article : Google Scholar | |
Isosaka M, Niinuma T, Nojima M, Kai M, Yamamoto E, Maruyama R, Nobuoka T, Nishida T, Kanda T, Taguchi T, et al: A screen for epigenetically silenced microRNA genes in gastrointestinal stromal tumors. PLoS One. 10:e01337542015. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Jiang H, Huang M, Hou X, Sun X, Jiang X, Dong X, Sun X, Zhou B and Qiao H: Depletion of histone deacetylase 1 inhibits metastatic abilities of gastric cancer cells by regulating the miR-34a/CD44 pathway. Oncol Rep. 34:663–672. 2015.PubMed/NCBI | |
Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lu G, Sun Y, An S, Xin S, Ren X, Zhang D, Wu P, Liao W, Ding Y and Liang L: MicroRNA-34a targets FMNL2 and E2F5 and suppresses the progression of colorectal cancer. Exp Mol Pathol. 99:173–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei B, Huang QE, Huang SR, Mai W and Zhong XG: MicroRNA 34a attenuates the proliferation, invasion and metastasis of gastric cancer cells via downregulation of MET. Mol Med Rep. 12:5255–5261. 2015.PubMed/NCBI | |
Yu L, Xiong J, Guo L, Miao L, Liu S and Guo F: The effects of lanthanum chloride on proliferation and apoptosis of cervical cancer cells: Involvement of let-7a and miR-34a microRNAs. Biometals. 28:879–890. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar | |
Kasinski AL and Slack FJ: miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 72:5576–5587. 2012. View Article : Google Scholar : PubMed/NCBI | |
He L, He X, Lowe SW and Hannon GJ: microRNAs join the p53 network - another piece in the tumour-suppression puzzle. Nat Rev Cancer. 7:819–822. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qiao P, Li G, Bi W, Yang L, Yao L and Wu D: microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer. 15:4692015. View Article : Google Scholar : PubMed/NCBI | |
Alemar B, Izetti P, Gregório C, Macedo GS, Castro MA, Osvaldt AB, Matte U and Ashton-Prolla P: miRNA-21 and miRNA-34a are potential minimally invasive biomarkers for the diagnosis of pancreatic ductal adenocarcinoma. Pancreas. Aug 10–2015.Epub ahead of print. PubMed/NCBI | |
Shi Y and Huang A: effects of sorafenib on lung metastasis in rats with hepatocellular carcinoma: The role of microRNAs. Tumour Biol. May 31–2015.(Epub ahead of print) http://dx.doi.org/10.1007/s13277-015-3565-1. View Article : Google Scholar | |
Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, Tian Q, Zha R, Zhan R and He X: MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis. 32:1641–1647. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stiuso P, Potenza N, Lombardi A, Ferrandino I, Monaco A, Zappavigna S, Vanacore D, Mosca N, Castiello F, Porto S, et al: MicroRNA-423-5p promotes autophagy in cancer cells and is increased in serum from hepatocarcinoma patients treated with sorafenib. Mol Ther Nucleic Acids. 4:e2332015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang X, Yang X, Liu Y, Shi Y, Ren J and Guleng B: miRNA423-5p regulates cell proliferation and invasion by targeting trefoil factor 1 in gastric cancer cells. Cancer Lett. 347:98–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu X and Lu J: The significance of detection of serum miR-423-5p and miR-484 for diagnosis of colorectal cancer. Clin Lab. 61:187–190. 2015.PubMed/NCBI | |
Ali S, Saleh H, Sethi S, Sarkar FH and Philip PA: MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer. 107:1354–1360. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Gao A, Zhang Z, Tian R, Luo A, Li M, Zhao D, Fu L, Fu L, Dong JT, et al: Genetic analysis and preliminary function study of miR-423 in breast cancer. Tumour Biol. 36:4763–4771. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Liu Y, Yang P, Wang Z, You Y and Jiang T: MicroRNA profiling of Chinese primary glioblastoma reveals a temozolomide-chemoresistant subtype. Oncotarget. 6:11676–11682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Qiu C, Zhang H, Wang J, Cui Q and Yin Y: Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: From functions to targets. PLoS One. 5:e130672010. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Pei J, Liu H, Wang H and Liu J: A polymorphism site in the pre-miR-34a coding region reduces miR-34a expression and promotes osteosarcoma cell proliferation and migration. Mol Med Rep. 10:2912–2916. 2014.PubMed/NCBI | |
Kisseljov FL: MicroRNAs and cancer. Mol Biol. 48:197–206. 2014. View Article : Google Scholar | |
Tutar L, Tutar E and Tutar Y: MicroRNAs and cancer; an overview. Curr Pharm Biotechnol. 15:430–437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Che Q, Bian Y, Zhou Q, Jiang F, Tong H, Ke J, Wang K and Wan XP: Autocrine motility factor promotes epithelial-mesenchymal transition in endometrial cancer via MAPK signaling pathway. Int J oncol. 47:1017–1024. 2015.PubMed/NCBI | |
Zhao L, Wang Y, Yan Q, Lv W, Zhang Y and He S: Exogenous hydrogen sulfide exhibits anti-cancer effects though p38 MAPK signaling pathway in C6 glioma cells. Biol Chem. 396:1247–1253. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Xin S, Wang H, Ma J, Zhang H and Wei H: Baicalein inhibits MMP-2 expression in human ovarian cancer cells by suppressing the p38 MAPK-dependent NF-κB signaling pathway. Anticancer Drugs. 26:649–656. 2015.PubMed/NCBI | |
Nakareangrit W, Thiantanawat A, Visitnonthachai D, Watcharasit P and Satayavivad J: Sodium arsenite inhibited genomic estrogen signaling but induced pERα (Ser118) via MAPK pathway in breast cancer cells. Environ Toxicol. Mar 2–2015.Epub ahead of print. View Article : Google Scholar | |
Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol. Jul 18–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Xia P and Xu Xy: PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI | |
Wang L, Wu J, Lu J, Ma R, Sun D and Tang J: Regulation of the cell cycle and PI3K/Akt/mTOR signaling pathway by tanshinone I in human breast cancer cell lines. Mol Med Rep. 11:931–939. 2015. | |
Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, Borgstein AM, Pavey S, van der Velden P, Out C, Jager MJ, et al: Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer. 92:2032–2038. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wagner EF and Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 9:537–549. 2009. View Article : Google Scholar : PubMed/NCBI | |
O'Connell RM, Taganov KD, Boldin MP, Cheng G and Baltimore D: MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 104:1604–1609. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, et al: miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med. 17:1627–1635. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shao N, Lu Z, Zhang Y, Wang M, Li W, Hu Z, Wang S and Lin Y: Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway. Cancer Lett. 364:165–172. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, et al: Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19:393–406. 2014. View Article : Google Scholar : PubMed/NCBI | |
Graham RM, Middleton A, Benito DA, Uddin R, Zhang B, Walters W, Bregy A, Vanni S and Komotar RJ: Targeting cancer stem cells via inhibition of PI3K/AKT pathway alone and in combination with autophagy blockade. Mol Cancer Ther. 14:B392015. View Article : Google Scholar | |
Prasad SB, Yadav SS, Das M, Modi A, Kumari S, Pandey LK, Singh S, Pradhan S and Narayan G: PI3K/AKT pathway-mediated regulation of p27(Kip1) is associated with cell cycle arrest and apoptosis in cervical cancer. Cell oncol (Dordr). 38:215–225. 2015. View Article : Google Scholar | |
Mabuchi S, Kuroda H, Takahashi R and Sasano T: The PI3K/AKT/MTOR pathway as a therapeutic target in ovarian cancer. Gynecol oncol. 137:173–179. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jin D, Yang JP, Hu JH, Wang LN and Zuo JL: MCP-1 stimulates spinal microglia via PI3K/Akt pathway in bone cancer pain. Brain Res. 1599:158–167. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang F and Wang L, Zhang S, Fang Q, Hao F, Sun Y, Zhao L, Chen S, Liao H and Wang L: CD147 modulates autophagy through the PI3K/Akt/mTOR pathway in human prostate cancer PC-3 cells. Oncol Lett. 9:1439–1443. 2015.PubMed/NCBI | |
Cárdenas A, Kong M, Alvarez A, Valdivia A, Quest AF and Leyton L: PAR-3 and Syndecan-4 are involved in astrocyte adhesion induced by neuronal Thy-1 ocyte adhesion. Glia. 63:E102. 2015. | |
Xie M, He J, He C and Wei S: γ secretase inhibitor BMS-708163 reverses resistance to eGFR inhibitor via the PI3K/Akt pathway in lung cancer. J Cell Biochem. 116:1019–1027. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xue B, Huang W, Yuan X, Xu B, Lou Y, Zhou Q, Ran F, Ge Z, Li R and Cui J: YSY01A, a novel proteasome inhibitor, induces cell cycle arrest on G2 phase in MCF-7 cells via eRα and PI3K/Akt pathways. J Cancer. 6:319–326. 2015. View Article : Google Scholar | |
Niu NK, Wang ZL, Pan ST, Ding HQ, Au GH, He ZX, Zhou ZW, Xiao G, Yang YX, Zhang X, et al: Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. Drug Des Devel Ther. 9:1555–1584. 2015.PubMed/NCBI | |
Gatza ML, Watt JC and Marriott SJ: Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene. 22:5141–5149. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bai XT and Nicot C: miR-28-3p is a cellular restriction factor that inhibits human T cell leukemia virus, type 1 (HTLV-1) replication and virus infection. J Biol Chem. 290:5381–5390. 2015. View Article : Google Scholar : PubMed/NCBI | |
Drosten M, Sum EY, Lechuga CG, Simón-Carrasco L, Jacob HK, García-Medina R, Huang S, Beijersbergen RL, Bernards R and Barbacid M: Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/erk signaling pathway. Proc Natl Acad Sci USA. 111:15155–15160. 2014. View Article : Google Scholar : PubMed/NCBI | |
Manousaridis I, Mavridou S, Goerdt S, Leverkus M and Utikal J: Cutaneous side effects of inhibitors of the RAS/RAF/MeK/eRK signalling pathway and their management. J Eur Acad Dermatol Venereol. 27:11–18. 2013. View Article : Google Scholar | |
Noser JA, Sakuma R, Lee PWK and Ikeda Y: The Ras/Raf-1/MeK/eRK signaling pathway dictates host cell permissiveness to VSV infection. Mol Ther. 13:S371. 2006. View Article : Google Scholar | |
Dancey JE: Agents targeting ras signaling pathway. Curr Pharm Des. 8:2259–2267. 2002. View Article : Google Scholar : PubMed/NCBI |