1
|
Pillai RN and Owonikoko TK: Small cell
lung cancer: Therapies and targets. Semin Oncol. 41:133–142. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Rutledge MR, Waddell JA and Solimando DA
Jr: Carboplatin (renally dosed) and etoposide regimen for
small-cell lung cancer. Hosp Pharm. 48:274–279. 2013. View Article : Google Scholar
|
3
|
Chen YT, Feng B and Chen LB: Update of
research on drug resistance in small cell lung cancer chemotherapy.
Asian Pac J Cancer Prev. 13:3577–3581. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xia B, Hong LZ, Cai XW, Zhu ZF, Liu Q,
Zhao KL, Fan M, Mao JF, Yang HJ, Wu KL, et al: Phase 2 study of
accelerated hypofractionated thoracic radiation therapy and
concurrent chemotherapy in patients with limited-stage small-cell
lung cancer. Int J Radiat Oncol Biol Phys. 91:517–523. 2015.
View Article : Google Scholar
|
5
|
Rule WG, Foster NR, Meyers JP, Ashman JB,
Vora SA, Kozelsky TF, Garces YI, Urbanic JJ, Salama JK and Schild
SE: Prophylactic cranial irradiation in elderly patients with small
cell lung cancer: Findings from a North Central Cancer Treatment
Group pooled analysis. J Geriatr Oncol. 6:119–126. 2015. View Article : Google Scholar
|
6
|
Zhu H, Guo H, Shi F, Zhu K, Luo J, Liu X,
Kong L and Yu J: Prophylactic cranial irradiation improved the
overall survival of patients with surgically resected small cell
lung cancer, but not for stage I disease. Lung Cancer. 86:334–338.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schabath MB, Nguyen A, Wilson P, Sommerer
KR, Thompson ZJ and Chiappori AA: Temporal trends from 1986 to 2008
in overall survival of small cell lung cancer patients. Lung
Cancer. 86:14–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Knez L, Sodja E, Kern I, Košnik M and
Cufer T: Predictive value of multidrug resistance proteins,
topoisomerases II and ERCC1 in small cell lung cancer: A systematic
review. Lung Cancer. 72:271–279. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kinehara Y, Minami T, Kijima T, Hoshino S,
Morimura O, Otsuka T, Hayama Y, Fukushima K, Takeuchi Y,
Higashiguchi M, et al: Favorable response to trastuzumab plus
irinotecan combination therapy in two patients with HER2-positive
relapsed small-cell lung cancer. Lung Cancer. 87:321–325. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ushijima R, Takayama K, Izumi M, Harada T,
Horiuchi Y, Uchino J, Hara N and Nakanishi Y: Immunohistochemical
expression of MRP2 and clinical resistance to platinum-based
chemotherapy in small cell lung cancer. Anticancer Res.
27:4351–4358. 2007.
|
11
|
Eda A, Tamura Y, Yoshida M and Hohjoh H:
Systematic gene regulation involving miRNAs during neuronal
differentiation of mouse P19 embryonic carcinoma cell. Biochem
Biophys Res Commun. 388:648–653. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tindall MJ and Clerk A: Modelling negative
feedback networks for activating transcription factor 3 predicts a
dominant role for miRNAs in immediate early gene regulation. PLOS
Comput Biol. 10:e10035972014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang R, Marshall D, Bryan GJ and Hornyik
C: Identification and characterization of miRNA transcriptome in
potato by high-throughput sequencing. PLoS One. 8:e572332013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zha W, Cao L, Shen Y and Huang M: Roles of
miR-144-ZFX pathway in growth regulation of non-small-cell lung
cancer. PLoS One. 8:e741752013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yoshikawa M: Biogenesis of trans-acting
siRNAs, endogenous secondary siRNAs in plants. Genes Genet Syst.
88:77–84. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schwab R, Palatnik JF, Riester M, Schommer
C, Schmid M and Weigel D: Specific effects of microRNAs on the
plant transcriptome. Dev Cell. 8:517–527. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Altermann E and Klaenhammer TR:
PathwayVoyager: Pathway mapping using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. BMC Genomics. 6:602005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wrzodek C, Dräger A and Zell A:
KEGGtranslator: Visualizing and converting the KEGG PATHWAY
database to various formats. Bioinformatics. 27:2314–2315. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Fukunaga R, Han BW, Hung JH, Xu J, Weng Z
and Zamore PD: Dicer partner proteins tune the length of mature
miRNAs in flies and mammals. Cell. 151:533–546. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Blake JA and Harris MA: The Gene Ontology
(GO) project: Structured vocabularies for molecular biology and
their application to genome and expression analysis. Curr Protoc
Bioinformatics Chapter. 7:2–7. 2008.
|
21
|
Smid M and Dorssers LC: GO-Mapper:
Functional analysis of gene expression data using the expression
level as a score to evaluate Gene Ontology terms. Bioinformatics.
20:2618–2625. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang G, Zhang H, He H, Tong W, Wang B,
Liao G, Chen Z and Du C: Up-regulation of microRNA in bladder tumor
tissue is not common. Int Urol Nephrol. 42:95–102. 2010. View Article : Google Scholar
|
23
|
Chen YH, Wang SQ, Wu XL, Shen M, Chen ZG,
Chen XG, Liu YX, Zhu XL, Guo F, Duan XZ, et al: Characterization of
microRNAs expression profiling in one group of Chinese urothelial
cell carcinoma identified by Solexa sequencing. Urol Oncol.
31:219–227. 2013. View Article : Google Scholar
|
24
|
Li P, Ma L, Zhang Y, Ji F and Jin F:
MicroRNA-137 down-regulates KIT and inhibits small cell lung cancer
cell proliferation. Biomed Pharmacother. 68:7–12. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bier A, Giladi N, Kronfeld N, Lee HK,
Cazacu S, Finniss S, Xiang C, Poisson L, deCarvalho AC, Slavin S,
et al: Micro-RNA-137 is downregulated in glioblastoma and inhibits
the stemness of glioma stem cells by targeting RTVP-1. Oncotarget.
4:665–676. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li L, Li Z, Kong X, Xie D, Jia Z, Jiang W,
Cui J, Du Y, Wei D, Huang S, et al: Down-regulation of microRNA-494
via loss of SMAD4 increases FOXM1 and β-catenin signaling in
pancreatic ductal adenocarcinoma cells. Gastroenterology.
147:485–497.e18. 2014. View Article : Google Scholar
|
27
|
Yang H, Li Q, Zhao W, Yuan D, Zhao H and
Zhou Y: miR-329 suppresses the growth and motility of neuroblastoma
by targeting KDM1A. FEBS Lett. 588:192–197. 2014. View Article : Google Scholar
|
28
|
Xiao B, Tan L, He B, Liu Z and Xu R:
MiRNA-329 targeting E2F1 inhibits cell proliferation in glioma
cells. J Transl Med. 11:1722013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Senanayake U, Das S, Vesely P, Alzoughbi
W, Fröhlich LF, Chowdhury P, Leuschner I, Hoefler G and Guertl B:
miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated
and their common target ACVR2B is strongly expressed in renal
childhood neoplasms. Carcinogenesis. 33:1014–1021. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Song B, Wang Y, Titmus MA, Botchkina G,
Formentini A, Kornmann M and Ju J: Molecular mechanism of
chemoresistance by miR-215 in osteosarcoma and colon cancer cells.
Mol Cancer. 9:962010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Götz S, García-Gómez JM, Terol J, Williams
TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J and Conesa A:
High-throughput functional annotation and data mining with the
Blast2GO suite. Nucleic Acids Res. 36:3420–3435. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nagaraju GP, Dontula R, El-Rayes BF and
Lakka SS: Molecular mechanisms underlying the divergent roles of
SPARC in human carcinogenesis. Carcinogenesis. 35:967–973. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
de Cremoux P and Robert J: Cell signalling
and cancer: Characterisation of therapeutic targets. Pathol Biol
(Paris). 60:217–222. 2012.In French. View Article : Google Scholar
|
34
|
Allard B, Turcotte M and Stagg J:
CD73-generated adenosine: Orchestrating the tumor-stroma interplay
to promote cancer growth. J Biomed Biotechnol. 2012:4851562012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Dollé L, Depypere HT and Bracke ME:
Anti-invasive/anti-metastasis strategies: New roads, new tools and
new hopes. Curr Cancer Drug Targets. 6:729–751. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lee JW, Bae SH, Jeong JW, Kim SH and Kim
KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability
and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang G, Nishimoto K, Yang Y and
Kleinerman ES: Participation of the Fas/FasL signaling pathway and
the lung microenvironment in the development of osteosarcoma lung
metastases. Adv Exp Med Biol. 804:203–217. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Giubellino A, Burke TR Jr and Bottaro DP:
Grb2 signaling in cell motility and cancer. Expert Opin Ther
Targets. 12:1021–1033. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
De Luca A, Maiello MR, D'Alessio A,
Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT
signalling pathways: Role in cancer pathogenesis and implications
for therapeutic approaches. Expert Opin Ther Targets. 16(Suppl 2):
S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Miliani de Marval PL and Zhang Y: The
RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget. 3:234–238. 2011.
View Article : Google Scholar
|
41
|
Cai Y, Cai T and Chen Y: Wnt pathway in
osteosarcoma, from oncogenic to therapeutic. J Cell Biochem.
115:625–631. 2014. View Article : Google Scholar
|
42
|
Li X, Jia Y, Zhang W, Zhang Y, Li B, Huang
M, Bao F, Wu J and Lou Y: The research progress about Wnt pathway
of lung cancer stem cells. Zhongguo Fei Ai Za Zhi. 14:695–698.
2011.In Chinese. PubMed/NCBI
|