1
|
Matloubian M, David A, Engel S, Ryan JE
and Cyster JG: A transmembrane CXC chemokine is a ligand for
HIV-coreceptor Bonzo. Nat Immunol. 1:298–304. 2000. View Article : Google Scholar
|
2
|
Shimaoka T, Kume N, Minami M, Hayashida K,
Kataoka H, Kita T and Yonehara S: Molecular cloning of a novel
scavenger receptor for oxidized low density lipoprotein, SR-PSOX,
on macrophages. J Biol Chem. 275:40663–40666. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
van der Voort R, van Lieshout AW, Toonen
LW, Slöetjes AW, Van Den Berg WB, Figdor CG, Radstake TR and Adema
GJ: Elevated CXCL16 expression by synovial macrophages recruits
memory T cells into rheumatoid joints. Arthritis Rheum.
52:1381–1391. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shimaoka T, Nakayama T, Kume N, Takahashi
S, Yamaguchi J, Minami M, Hayashida K, Kita T, Ohsumi J, Yoshie O,
et al: Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates
bacterial phagocytosis by APCs through its chemokine domain. J
Immunol. 171:1647–1651. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heydtmann M, Lalor PF, Eksteen JA,
Hubscher SG, Briskin M and Adams DH: CXC chemokine ligand 16
promotes integrin-mediated adhesion of liver-infiltrating
lymphocytes to cholangiocytes and hepatocytes within the inflamed
human liver. J Immunol. 174:1055–1062. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gao Q, Zhao YJ, Wang XY, Qiu SJ, Shi YH,
Sun J, Yi Y, Shi JY, Shi GM, Ding ZB, et al: CXCR6 upregulation
contributes to a proinflammatory tumor microenvironment that drives
metastasis and poor patient outcomes in hepatocellular carcinoma.
Cancer Res. 72:3546–3556. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sung SY, Hsieh CL, Law A, Zhau HE, Pathak
S, Multani AS, Lim S, Coleman IM, Wu LC, Figg WD, et al:
Coevolution of prostate cancer and bone stroma in three-dimensional
coculture: Implications for cancer growth and metastasis. Cancer
Res. 68:9996–10003. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hojo S, Koizumi K, Tsuneyama K, Arita Y,
Cui Z, Shinohara K, Minami T, Hashimoto I, Nakayama T, Sakurai H,
et al: High-level expression of chemokine CXCL16 by tumor cells
correlates with a good prognosis and increased tumor-infiltrating
lymphocytes in colorectal cancer. Cancer Res. 67:4725–4731. 2007.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimaoka T, Nakayama T, Fukumoto N, Kume
N, Takahashi S, Yamaguchi J, Minami M, Hayashida K, Kita T, Ohsumi
J, et al: Cell surface-anchored SR-PSOX/CXC chemokine ligand 16
mediates firm adhesion of CXC chemokine receptor 6-expressing
cells. J Leukoc Biol. 75:267–274. 2004. View Article : Google Scholar
|
10
|
Gough PJ, Garton KJ, Wille PT, Rychlewski
M, Dempsey PJ and Raines EW: A disintegrin and metalloproteinase
10-mediated cleavage and shedding regulates the cell surface
expression of CXC chemokine ligand 16. J Immunol. 172:3678–3685.
2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Abel S, Hundhausen C, Mentlein R, Schulte
A, Berkhout TA, Broadway N, Hartmann D, Sedlacek R, Dietrich S,
Muetze B, et al: The transmembrane CXC-chemokine ligand 16 is
induced by IFN-gamma and TNF-alpha and shed by the activity of the
disintegrin-like metalloproteinase ADAM10. J Immunol.
172:6362–6372. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lehrke M, Konrad A, Schachinger V, Tillack
C, Seibold F, Stark R, Parhofer IG and Broedl UC: CXCL16 is a
surrogate marker of inflammatory bowel disease. Scand J
Gastroenterol. 43:283–288. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ruth JH, Haas CS, Park CC, Amin MA,
Martinez RJ, Haines GK, Shahrara S, Campbell PL and Koch AE:
CXCL16-mediated cell recruitment to rheumatoid arthritis synovial
tissue and murine lymph nodes is dependent upon the MAPK pathway.
Arthritis Rheum. 54:765–778. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Postea O, Koenen RR, Hristov M, Weber C
and Ludwig A: Homocysteine up-regulates vascular transmembrane
chemokine CXCL16 and induces CXCR6+ lymphocyte
recruitment in vitro and in vivo. J Cell Mol Med. 12:1700–1709.
2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang J, Lu Y, Koch AE, Zhang J and
Taichman RS: CXCR6 induces prostate cancer progression by the
AKT/mammalian target of rapamycin signaling pathway. Cancer Res.
68:10367–10376. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin S, Sun L, Hu J, Wan S, Zhao R, Yuan S
and Zhang L: Chemo-kine C-X-C motif receptor 6 contributes to cell
migration during hypoxia. Cancer Lett. 279:108–117. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhuge X, Murayama T, Arai H, Yamauchi R,
Tanaka M, Shimaoka T, Yonehara S, Kume N, Yokode M and Kita T:
CXCL16 is a novel angiogenic factor for human umbilical vein
endothelial cells. Biochem Biophys Res Commun. 331:1295–1300. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chandrasekar B, Bysani S and Mummidi S:
CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, I kappa
B kinase, and nuclear factor-kappa B and induces cell-cell adhesion
and aortic smooth muscle cell proliferation. J Biol Chem.
279:3188–3196. 2004. View Article : Google Scholar
|
19
|
Kwon KH, Ohigashi H and Murakami A:
Dextran sulfate sodium enhances interleukin-1 beta release via
activation of p38 MAPK and ERK1/2 pathways in murine peritoneal
macrophages. Life Sci. 81:362–371. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jiang BH, Zheng JZ, Aoki M and Vogt PK:
Phosphatidylinositol 3-kinase signaling mediates angiogenesis and
expression of vascular endothelial growth factor in endothelial
cells. Proc Natl Acad Sci USA. 97:1749–1753. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Binion DG, Otterson MF and Rafiee P:
Curcumin inhibits VEGF-mediated angiogenesis in human intestinal
microvascular endothelial cells through COX-2 and MAPK inhibition.
Gut. 57:1509–1517. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhu WH, Han J and Nicosia RF: Requisite
role of p38 MAPK in mural cell recruitment during angiogenesis in
the rat aorta model. J Vasc Res. 40:140–148. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao R, Sun L, Lin S, Bai X, Yu B, Yuan S
and Zhang L: The saponin monomer of dwarf lilyturf tuber, DT-13,
inhibits angio-genesis under hypoxia and normoxia via
multi-targeting activity. Oncol Rep. 29:1379–1386. 2013.PubMed/NCBI
|
24
|
Chi JT, Wang Z, Nuyten DS, Rodriguez EH,
Schaner ME, Salim A, Wang Y, Kristensen GB, Helland Å,
Børresen-Dale AL, et al: Gene expression programs in response to
hypoxia: Cell type specificity and prognostic significance in human
cancers. PLoS Med. 3:e472006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Petering H, Kluthe C, Dulkys Y, Kiehl P,
Ponath PD, Kapp A and Elsner J: Characterization of the CC
chemokine receptor 3 on human keratinocytes. J Invest Dermatol.
116:549–555. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou L, Sun L, Lin S, Fang D, Zhao R, Zhu
J, Liu J, Chen L, Shi W, Yuan S, et al: Inhibition of angiogenic
activity of hypoxic fibroblast cell line MRC-5 in vitro by
topotecan. Med Oncol. 28:653–659. 2011. View Article : Google Scholar
|
27
|
Kim HG, Hwang YP and Jeong HG:
Metallothionein-III induces HIF-1alpha-mediated VEGF expression in
brain endothelial cells. Biochem Biophys Res Commun. 369:666–671.
2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ahluwalia A and Tarnawski AS: Critical
role of hypoxia sensor - HIF-1α in VEGF gene activation.
Implications for angiogenesis and tissue injury healing. Curr Med
Chem. 19:90–97. 2012. View Article : Google Scholar
|
29
|
Zubilewicz A, Hecquet C, Jeanny JC,
Soubrane G, Courtois Y and Mascarelli F: Two distinct signalling
pathways are involved in FGF2-stimulated proliferation of
choriocapillary endothelial cells: A comparative study with VEGF.
Oncogene. 20:1403–1413. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang HQ, Bai L, Shen BR, Yan ZQ and Jiang
ZL: Coculture with endothelial cells enhances vascular smooth
muscle cell adhesion and spreading via activation of beta1-integrin
and phosphatidylinositol 3-kinase/Akt. Eur J Cell Biol. 86:51–62.
2007. View Article : Google Scholar
|
31
|
Gee E, Milkiewicz M and Haas TL: p38 MAPK
activity is stimulated by vascular endothelial growth factor
receptor 2 activation and is essential for shear stress-induced
angiogenesis. J Cell Physiol. 222:120–126. 2010. View Article : Google Scholar
|
32
|
Mavria G, Vercoulen Y, Yeo M, Paterson H,
Karasarides M, Marais R, Bird D and Marshall CJ: ERK-MAPK signaling
opposes Rho-kinase to promote endothelial cell survival and
sprouting during angiogenesis. Cancer Cell. 9:33–44. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhong H, Chiles K, Feldser D, Laughner E,
Hanrahan C, Georgescu MM, Simons JW and Semenza GL: Modulation of
hypoxia-inducible factor 1alpha expression by the epidermal growth
factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human
prostate cancer cells: Implications for tumor angiogenesis and
therapeutics. Cancer Res. 60:1541–1545. 2000.PubMed/NCBI
|
34
|
Treins C, Giorgetti-Peraldi S, Murdaca J,
Semenza GL and Van Obberghen E: Insulin stimulates
hypoxia-inducible factor 1 through a phosphatidylinositol
3-kinase/target of rapamycin-dependent signaling pathway. J Biol
Chem. 277:27975–27981. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Stiehl DP, Jelkmann W, Wenger RH and
Hellwig-Burgel T: Normoxic induction of the hypoxia-inducible
factor 1alpha by insulin and interleukin-1beta involves the
phosphatidylinositol 3-kinase pathway. FEBS Lett. 512:157–162.
2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng X, Ruas JL, Cao R, Salomons FA, Cao
Y, Poellinger L and Pereira T: Cell-type-specific regulation of
degradation of hypoxia-inducible factor 1 alpha: Role of
subcellular compartmentalization. Mol Cell Biol. 26:4628–4641.
2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lai VK, Afzal MR, Ashraf M, Jiang S and
Haider HK: Non-hypoxic stabilization of HIF-Ialpha during
coordinated interaction between Akt and angiopoietin-1 enhances
endothelial commitment of bone marrow stem cells. J Mol Med.
90:719–730. 2012. View Article : Google Scholar
|
38
|
Hur E, Chang KY, Lee E, Lee SK and Park H:
Mitogen-activated protein kinase kinase inhibitor PD98059 blocks
the trans-activation but not the stabilization or DNA binding
ability of hypoxia-inducible factor-1alpha. Mol Pharmacol.
59:1216–1224. 2001.PubMed/NCBI
|
39
|
Roos TU, Heiss EH, Schwaiberger AV,
Schachner D, Sroka IM, Oberan T, Vollmar AM and Dirsch VM: Caffeic
acid phenethyl ester inhibits PDGF-induced proliferation of
vascular smooth muscle cells via activation of p38 MAPK,
HIF-1alpha, and heme oxygenase-1. J Nat Prod. 74:352–356. 2011.
View Article : Google Scholar : PubMed/NCBI
|