1
|
Joy AA, Ghosh M, Fernandes R and Clemons
MJ: Systemic treatment approaches in her2-negative advanced breast
cancer-guidance on the guidelines. Curr Oncol. 22(Suppl 1):
S29–S42. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fina E, Callari M, Reduzzi C, D'Aiuto F,
Mariani G, Generali D, Pierotti MA, Daidone MG and Cappelletti V:
Gene expression profiling of circulating tumor cells in breast
cancer. Clin Chem. 61:278–289. 2015. View Article : Google Scholar
|
3
|
Bishop JR, Schuksz M and Esko JD: Heparan
sulphate proteoglycans fine-tune mammalian physiology. Nature.
446:1030–1037. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Turnbull J, Powell A and Guimond S:
Heparan sulfate: Decoding a dynamic multifunctional cell regulator.
Trends Cell Biol. 11:75–82. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rosen SD and Lemjabbar-Alaoui H: Sulf-2:
An extracellular modulator of cell signaling and a cancer target
candidate. Expert Opin Ther Targets. 14:935–949. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Maltseva I, Chan M, Kalus I, Dierks T and
Rosen SD: The SULFs, extracellular sulfatases for heparan sulfate,
promote the migration of corneal epithelial cells during wound
repair. PLoS One. 8:e696422013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fujita K, Takechi E, Sakamoto N, Sumiyoshi
N, Izumi S, Miyamoto T, Matsuura S, Tsurugaya T, Akasaka K and
Yamamoto T: HpSulf, a heparan sulfate 6-O-endosulfatase, is
involved in the regulation of VEGF signaling during sea urchin
development. Mech Dev. 127:235–245. 2010. View Article : Google Scholar
|
8
|
Uchimura K, Morimoto-Tomita M, Bistrup A,
Li J, Lyon M, Gallagher J, Werb Z and Rosen SD: HSulf-2, an
extracellular endoglucosamine-6-sulfatase, selectively mobilizes
heparin-bound growth factors and chemokines: Effects on VEGF,
FGF-1, and SDF-1. BMC Biochem. 7:22006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Khurana A, Jung-Beom D, He X, Kim SH,
Busby RC, Lorenzon L, Villa M, Baldi A, Molina J, Goetz MP, et al:
Matrix detachment and proteasomal inhibitors diminish Sulf2
expression in breast cancer cell lines and mouse xenografts. Clin
Exp Metastasis. 30:407–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hammond E, Khurana A, Shridhar V and
Dredge K: The role of heparanase and sulfatases in the modification
of heparan sulfate proteoglycans within the tumor microenvironment
and opportunities for novel cancer therapeutics. Front Oncol.
4:1952014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Khurana A, Liu P, Mellone P, Lorenzon L,
Vincenzi B, Datta K, Yang B, Linhardt RJ, Lingle W, Chien J, et al:
HSulf-1 modulates FGF2- and hypoxia-mediated migration and invasion
of breast cancer cells. Cancer Res. 71:2152–2161. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Peterson SM, Iskenderian A, Cook L,
Romashko A, Tobin K, Jones M, Norton A, Gómez-Yafal A, Heartlein
MW, Concino MF, et al: Human sulfatase 2 inhibits in vivo tumor
growth of MDA-MB-231 human breast cancer xenografts. BMC Cancer.
10:4272010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lai JP, Sandhu DS, Yu C, Han T, Moser CD,
Jackson KK, Guerrero RB, Aderca I, Isomoto H, Garrity-Park MM, et
al: Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth
factor signaling, and decreases survival in hepatocellular
carcinoma. Hepatology. 47:1211–1222. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nawroth R, van Zante A, Cervantes S,
McManus M, Hebrok M and Rosen SD: Extracellular sulfatases,
elements of the Wnt signaling pathway, positively regulate growth
and tumorigenicity of human pancreatic cancer cells. PLoS.
2:e3922007. View Article : Google Scholar
|
15
|
Morimoto-Tomita M, Uchimura K, Bistrup A,
Lum DH, Egeblad M, Boudreau N, Werb Z and Rosen SD: Sulf-2, a
proangiogenic heparan sulfate endosulfatase, is upregulated in
breast cancer. Neoplasia. 7:1001–1010. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lemjabbar-Alaoui H, van Zante A, Singer
MS, Xue Q, Wang YQ, Tsay D, He B, Jablons DM and Rosen SD: Sulf-2,
a heparan sulfate endosulfatase, promotes human lung
carcinogenesis. Oncogene. 29:635–646. 2010. View Article : Google Scholar :
|
17
|
Rosen SD and Lemjabbar-Alaoui H: Sulf-2:
An extracellular modulator of cell signaling and a cancer target
candidate. Expert Opin Ther Targets. 14:935–949. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu C, Qi X, Chen Y, Sun B, Dai Y and Gu
Y: PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in
IGF-1-induced VEGF-C upregulation in breast cancer. J Cancer Res
Clin Oncol. 137:1587–1594. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Khurana A, Beleford D, He X, Chien J and
Shridhar V: Role of heparan sulfatases in ovarian and breast
cancer. Am J Cancer Res. 3:34–45. 2013.PubMed/NCBI
|
20
|
Khurana A, McKean H, Kim H, Kim SH,
McGuire J, Roberts LR, Goetz MP and Shridhar V: Silencing of
HSulf-2 expression in http://MCF10DCIS.comurisimpleMCF10DCIS.com cells
attenuate ductal carcinoma in situ progression to invasive ductal
carcinoma in vivo. Breast Cancer Res. 14:R432012. View Article : Google Scholar
|
21
|
Guo J, Huang Y, Yang L, Xie Z, Song S, Yin
J, Kuang L and Qin W: Association between abortion and breast
cancer: An updated systematic review and meta-analysis based on
prospective studies. Cancer Causes Control. 26:811–819. 2015.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Scully OJ, Bay BH, Yip G and Yu Y: Breast
cancer metastasis. Cancer Genomics Proteomics. 9:311–320.
2012.PubMed/NCBI
|
23
|
Sun DW, Zhang YY, Qi Y, Zhou XT and Lv GY:
Prognostic significance of MMP-7 expression in colorectal cancer: A
meta-analysis. Cancer Epidemiol. 39:135–142. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kasthuri RS, Taubman MB and Mackman N:
Role of tissue factor in cancer. J Clin Oncol. 27:4834–4838. 2009.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Eichhorn ME, Kleespies A, Angele MK, Jauch
KW and Bruns CJ: Angiogenesis in cancer: Molecular mechanisms,
clinical impact. Langenbecks Arch Surg. 392:371–379. 2007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Harris NC, Davydova N, Roufail S,
Paquet-Fifield S, Paavonen K, Karnezis T, Zhang YF, Sato T,
Rothacker J, Nice EC, et al: The propeptides of VEGF-D determine
heparin binding, receptor heterodimerization, and effects on tumor
biology. J Biol Chem. 288:8176–8186. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gu Y, Qi X and Guo S: Lymphangiogenesis
induced by VEGF-C and VEGF-D promotes metastasis and a poor outcome
in breast carcinoma: A retrospective study of 61 cases. Clin Exp
Metastasis. 25:717–725. 2008. View Article : Google Scholar : PubMed/NCBI
|