1
|
Jayson GC, Kohn EC, Kitchener HC and
Ledermann JA: Ovarian cancer. Lancet. 384:1376–1388. 2014.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Cannistra SA: Cancer of the ovary. N Engl
J Med. 351:2519–2529. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xiong J: SALL4: Engine of cell stemness.
Curr Gene Ther. 14:400–411. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tan MH, Au KF, Leong DE, Foygel K, Wong WH
and Yao MW: An Oct4-Sall4-Nanog network controls developmental
progression in the pre-implantation mouse embryo. Mol Syst Biol.
9:6322013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rao S, Zhen S, Roumiantsev S, McDonald LT,
Yuan GC and Orkin SH: Differential roles of Sall4 isoforms in
embryonic stem cell pluripotency. Mol Cell Biol. 30:5364–5380.
2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Uez N, Lickert H, Kohlhase J, de Angelis
MH, Kühn R, Wurst W and Floss T: Sall4 isoforms act during
proximal-distal and anterior-posterior axis formation in the mouse
embryo. Genesis. 46:463–477. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY,
Soh BS, Lou Y, Yang J, Ma Y, Chai L, et al: Sall4 modulates
embryonic stem cell pluripotency and early embryonic development by
the transcriptional regulation of Pou5f1. Nat Cell Biol.
8:1114–1123. 2006. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM,
Lai R, Ritz J, Krause DS and Chai L: SALL4, a novel oncogene, is
constitutively expressed in human acute myeloid leukemia (AML) and
induces AML in transgenic mice. Blood. 108:2726–2735. 2006.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Li A, Yang Y, Gao C, Lu J, Jeong HW, Liu
BH, Tang P, Yao X, Neuberg D, Huang G, et al: A SALL4/MLL/HOXA9
pathway in murine and human myeloid leukemogenesis. J Clin Invest.
123:4195–4207. 2013. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Ardalan Khales S, Abbaszadegan MR,
Abdollahi A, Raeisossadati R, Tousi MF and Forghanifard MM: SALL4
as a new biomarker for early colorectal cancers. J Cancer Res Clin
Oncol. 141:229–235. 2015. View Article : Google Scholar
|
11
|
Zhang L, Xu Z, Xu X, Zhang B, Wu H, Wang
M, Zhang X, Yang T, Cai J, Yan Y, et al: SALL4, a novel marker for
human gastric carcinogenesis and metastasis. Oncogene.
33:5491–5500. 2014. View Article : Google Scholar
|
12
|
Masuda S, Suzuki K and Izpisua Belmonte
JC: Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N
Engl J Med. 369:11712013.PubMed/NCBI
|
13
|
Kobayashi D, Kuribayshi K, Tanaka M and
Watanabe N: SALL4 is essential for cancer cell proliferation and is
overexpressed at early clinical stages in breast cancer. Int J
Oncol. 38:933–939. 2011.PubMed/NCBI
|
14
|
Jelovac D and Armstrong DK: Recent
progress in the diagnosis and treatment of ovarian cancer. CA
Cancer J Clin. 61:183–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot
CV, Zhao Y, Reynolds S, Cheng H, Rupaimoole R, et al: Integrated
analyses identify a master microRNA regulatory network for the
mesenchymal subtype in serous ovarian cancer. Cancer Cell.
23:186–199. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bast RC Jr, Hennessy B and Mills GB: The
biology of ovarian cancer: New opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Jemal A, Tiwari RC, Murray T, Ghafoor A,
Samuels A, Ward E, Feuer EJ and Thun MJ; American Cancer Society:
Cancer statistics, 2004. CA Cancer J Clin. 54:8–29. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kohlhase J, Schubert L, Liebers M, Rauch
A, Becker K, Mohammed SN, Newbury-Ecob R and Reardon W: Mutations
at the SALL4 locus on chromosome 20 result in a range of clinically
overlapping phenotypes, including Okihiro syndrome, Holt-Oram
syndrome, acro-renal-ocular syndrome, and patients previously
reported to represent thalidomide embryopathy. J Med Genet.
40:473–478. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Al-Baradie R, Yamada K, St Hilaire C, Chan
WM, Andrews C, McIntosh N, Nakano M, Martonyi EJ, Raymond WR,
Okumura S, et al: Duane radial ray syndrome (Okihiro syndrome) maps
to 20q13 and results from mutations in SALL4, a new member of the
SAL family. Am J Hum Genet. 71:1195–1199. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang X, Yuan X, Zhu W, Qian H and Xu W:
SALL4: An emerging cancer biomarker and target. Cancer Lett.
357:55–62. 2015. View Article : Google Scholar
|
21
|
Kobayashi D, Kuribayashi K, Tanaka M and
Watanabe N: Overexpression of SALL4 in lung cancer and its
importance in cell proliferation. Oncol Rep. 26:965–970.
2011.PubMed/NCBI
|
22
|
Hobbs RM, Fagoonee S, Papa A, Webster K,
Altruda F, Nishinakamura R, Chai L and Pandolfi PP: Functional
antagonism between Sall4 and Plzf defines germline progenitors.
Cell Stem Cell. 10:284–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Trinh DT, Shibata K, Hirosawa T, Umezu T,
Mizuno M, Kajiyama H and Kikkawa F: Diagnostic utility of CD117,
CD133, SALL4, OCT4, TCL1 and glypican-3 in malignant germ cell
tumors of the ovary. J Obstet Gynaecol Res. 38:841–848. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Miettinen M, Wang Z, McCue PA,
Sarlomo-Rikala M, Rys J, Biernat W, Lasota J and Lee YS: SALL4
expression in germ cell and non-germ cell tumors: A systematic
immunohistochemical study of 3215 cases. Am J Surg Pathol.
38:410–420. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Böhm J, Sustmann C, Wilhelm C and Kohlhase
J: SALL4 is directly activated by TCF/LEF in the canonical Wnt
signaling pathway. Biochem Biophys Res Commun. 348:898–907. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao L, Shao M, Schilder J, Guise T,
Mohammad KS and Matei D: Tissue transglutaminase links TGF-β,
epithelial to mesenchymal transition and a stem cell phenotype in
ovarian cancer. Oncogene. 31:2521–2534. 2012. View Article : Google Scholar
|
27
|
Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan
B, Srivastava S, Lim GS, Tang P, Yang H, et al: SALL4 is a new
target in endometrial cancer. Oncogene. 34:63–72. 2015. View Article : Google Scholar
|
28
|
Sánchez-Tilló E, Liu Y, de Barrios O,
Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A
and Postigo A: EMT-activating transcription factors in cancer:
Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Polyak K and Weinberg RA: Transitions
between epithelial and mesenchymal states: Acquisition of malignant
and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lim J and Thiery JP:
Epithelial-mesenchymal transitions: Insights from development.
Development. 139:3471–3486. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yi BR, Kim TH, Kim YS and Choi KC:
Alteration of epithelial-mesenchymal transition markers in human
normal ovaries and neoplastic ovarian cancers. Int J Oncol.
46:272–280. 2015.
|
32
|
Chao TK, Yo YT, Liao YP, Wang YC, Su PH,
Huang TS and Lai HC: LIM-homeobox transcription factor 1, alpha
(LMX1A) inhibits tumourigenesis, epithelial-mesenchymal transition
and stem-like properties of epithelial ovarian cancer. Gynecol
Oncol. 128:475–482. 2013. View Article : Google Scholar
|
33
|
Davidson B, Holth A, Hellesylt E, Tan TZ,
Huang RY, Tropé C, Nesland JM and Thiery JP: The clinical role of
epithelial-mesenchymal transition and stem cell markers in
advanced-stage ovarian serous carcinoma effusions. Hum Pathol.
46:1–8. 2015. View Article : Google Scholar
|