1
|
Raymond AK and Jaffe N: Osteosarcoma
multidisciplinary approach to the management from the pathologist's
perspective. Cancer Treat Res. 152:63–84. 2009. View Article : Google Scholar
|
2
|
Gorlick R, Anderson P, Andrulis I, Arndt
C, Beardsley GP, Bernstein M, Bridge J, Cheung NK, Dome JS, Ebb D,
et al: Biology of childhood osteogenic sarcoma and potential
targets for therapeutic development: Meeting summary. Clin Cancer
Res. 9:5442–5453. 2003.PubMed/NCBI
|
3
|
Kager L, Zoubek A, Pötschger U, Kastner U,
Flege S, Kempf-Bielack B, Branscheid D, Kotz R, Salzer-Kuntschik M,
Winkelmann W, et al: Primary metastatic osteosarcoma: Presentation
and outcome of patients treated on neoadjuvant Cooperative
Osteosarcoma Study Group protocols. J Clin Oncol. 21:2011–2018.
2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bacci G, Longhi A, Versari M, Mercuri M,
Briccoli A and Picci P: Prognostic factors for osteosarcoma of the
extremity treated with neoadjuvant chemotherapy: 15-Year experience
in 789 patients treated at a single institution. Cancer.
106:1154–1161. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Memon AA, Chang JW, Oh BR and Yoo YJ:
Identification of differentially expressed proteins during human
urinary bladder cancer progression. Cancer Detect Prev. 29:249–255.
2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cancer Genome Atlas Research Network; Brat
DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay
E, Miller CR, Vitucci M, Morozova O, et al: Comprehensive,
integrative genomic analysis of diffuse lower-grade gliomas. N Engl
J Med. 372:2481–2498. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ikota H, Nobusawa S, Arai H, Kato Y,
Ishizawa K, Hirose T and Yokoo H: Evaluation of IDH1 status in
diffusely infiltrating gliomas by immunohistochemistry using
anti-mutant and wild type IDH1 antibodies. Brain Tumor Pathol.
32:237–244. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lian CG, Xu Y, Ceol C, Wu F, Larson A,
Dresser K, Xu W, Tan L, Hu Y, Zhan Q, et al: Loss of
5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.
Cell. 150:1135–1146. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Park SY, Lee SM, Shin SW and Park JW:
Inactivation of mitochondrial NADP+-dependent isocitrate
dehydrogenase by hypochlorous acid. Free Radic Res. 42:467–473.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jo SH, Son MK, Koh HJ, Lee SM, Song IH,
Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, et al: Control of
mitochondrial redox balance and cellular defense against oxidative
damage by mitochondrial NADP+-dependent isocitrate
dehydrogenase. J Biol Chem. 276:16168–16176. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hu X, Liu Y, Qin C, Pan Z, Luo J, Yu A and
Cheng Z: Up-regulated isocitrate dehydrogenase 1 suppresses
proliferation, migration and invasion in osteosarcoma: In vitro and
in vivo. Cancer Lett. 346:114–121. 2014. View Article : Google Scholar
|
12
|
Hu X, Yu AX, Qi BW, Fu T, Wu G, Zhou M,
Luo J and Xu JH: The expression and significance of IDH1 and p53 in
osteosarcoma. J Exp Clin Cancer Res. 29:432010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim SH, Yoo YH, Lee JH and Park JW:
Mitochondrial NADP+-dependent isocitrate dehydrogenase
knockdown inhibits tumorigenicity of melanoma cells. Biochem
Biophys Res Commun. 451:246–251. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY,
Chang KT, Park JW, Park DC, Song BJ, Veech RL, et al: Cytosolic
NADP+-dependent isocitrate dehydrogenase plays a key
role in lipid metabolism. J Biol Chem. 279:39968–39974. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakamura H: Thioredoxin and its related
molecules: Update 2005. Antioxid Redox Signal. 7:823–828. 2005.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kirsch M and De Groot H: NAD(P)H, a
directly operating antioxidant? FASEB J. 15:1569–1574. 2001.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Avery AM, Willetts SA and Avery SV:
Genetic dissection of the phospholipid hydroperoxidase activity of
yeast gpx3 reveals its functional importance. J Biol Chem.
279:46652–46658. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nishikawa M: Reactive oxygen species in
tumor metastasis. Cancer Lett. 266:53–59. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim S, Kim SY, Ku HJ, Jeon YH, Lee HW, Lee
J, Kwon TK, Park KM and Park JW: Suppression of tumorigenesis in
mitochondrial NADP+-dependent isocitrate dehydrogenase
knock-out mice. Biochim Biophys Acta. 1842:135–143. 2014.
View Article : Google Scholar
|
20
|
Kim ES and Moon A: Ursolic acid inhibits
the invasive phenotype of SNU-484 human gastric cancer cells. Oncol
Lett. 9:897–902. 2015.PubMed/NCBI
|
21
|
Inoue R, Matsuki NA, Jing G, Kanematsu T,
Abe K and Hirata M: The inhibitory effect of alendronate, a
nitrogen-containing bisphosphonate on the PI3K-Akt-NFkappaB pathway
in osteosarcoma cells. Br J Pharmacol. 146:633–641. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ghosh S and Karin M: Missing pieces in the
NF-kappaB puzzle. Cell. 109(Suppl 1): S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Eliseev RA, Schwarz EM, Zuscik MJ, O'Keefe
RJ, Drissi H and Rosier RN: Smad7 mediates inhibition of Saos2
osteosarcoma cell differentiation by NFkappaB. Exp Cell Res.
312:40–50. 2006. View Article : Google Scholar
|
24
|
Andela VB, Sheu TJ, Puzas EJ, Schwarz EM,
O'Keefe RJ and Rosier RN: Malignant reversion of a human
osteosarcoma cell line, Saos-2, by inhibition of NFkappaB. Biochem
Biophys Res Commun. 297:237–241. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Han YP, Tuan TL, Wu H, Hughes M and Garner
WL: TNF-alpha stimulates activation of pro-MMP2 in human skin
through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci.
114:131–139. 2001.
|
26
|
Sun P, Mu Y and Zhang S: A novel
NF-κB/MMP-3 signal pathway involves in the aggressivity of glioma
promoted by Bmi-1. Tumour Biol. 35:12721–12727. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park SL, Kim WJ and Moon SK: p21WAF1
mediates the IL-15-induced migration and invasion of human bladder
cancer 5637 cells via the ERK1/2/NF-κB/MMP-9 pathway. Int
Immunopharmacol. 22:59–65. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li Z, Guo Y, Jiang H, Zhang T, Jin C,
Young CY and Yuan H: Differential regulation of MMPs by E2F1, Sp1
and NF-kappa B controls the small cell lung cancer invasive
phenotype. BMC Cancer. 14:2762014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Poudel B and Kim DK, Ki HH, Kwon YB, Lee
YM and Kim DK: Downregulation of ERK signaling impairs U2OS
osteosarcoma cell migration in collagen matrix by suppressing MMP9
production. Oncol Lett. 7:215–218. 2014.
|
30
|
Wang IC, Chen YJ, Hughes DE, Ackerson T,
Major ML, Kalinichenko VV, Costa RH, Raychaudhuri P, Tyner AL and
Lau LF: FoxM1 regulates transcription of JNK1 to promote the
G1/S transition and tumor cell invasiveness. J Biol
Chem. 283:20770–20778. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Egeblad M and Werb Z: New functions for
the matrix metalloproteinases in cancer progression. Nat Rev
Cancer. 2:161–174. 2002. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Xu J, Wu S and Shi X: Expression of matrix
metalloproteinase regulator, RECK, and its clinical significance in
osteosarcoma. J Orthop Res. 28:1621–1625. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hirotsu M, Setoguchi T, Sasaki H,
Matsunoshita Y, Gao H, Nagao H, Kunigou O and Komiya S: Smoothened
as a new therapeutic target for human osteosarcoma. Mol Cancer.
9:52010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Luo Y, Liang F and Zhang ZY: PRL1 promotes
cell migration and invasion by increasing MMP2 and MMP9 expression
through Src and ERK1/2 pathways. Biochemistry. 48:1838–1846. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang R, Dong K, Lin F, Wang X, Gao P, Wei
SH, Cheng SY and Zhang HZ: Inhibiting proliferation and enhancing
chemosensitivity to taxanes in osteosarcoma cells by RNA
interference-mediated downregulation of stathmin expression. Mol
Med. 13:567–575. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Koppikar P, Lui VW, Man D, Xi S, Chai RL,
Nelson E, Tobey AB and Grandis JR: Constitutive activation of
signal transducer and activator of transcription 5 contributes to
tumor growth, epithelial-mesenchymal transition, and resistance to
epidermal growth factor receptor targeting. Clin Cancer Res.
14:7682–7690. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Boye K, Grotterød I, Aasheim HC, Hovig E
and Maelandsmo GM: Activation of NF-kappaB by extracellular S100A4:
Analysis of signal transduction mechanisms and identification of
target genes. Int J Cancer. 123:1301–1310. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huvos AG, Rosen G and Marcove RC: Primary
osteogenic sarcoma: Pathologic aspects in 20 patients after
treatment with chemotherapy en bloc resection, and prosthetic bone
replacement. Arch Pathol Lab Med. 101:14–18. 1977.PubMed/NCBI
|
39
|
Rosen G, Marcove RC, Caparros B, Nirenberg
A, Kosloff C and Huvos AG: Primary osteogenic sarcoma: The
rationale for preoperative chemotherapy and delayed surgery.
Cancer. 43:2163–2177. 1979. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pessôa IA, Sagica FE, Anselmo NP, Brito JR
and de Oliveira EH: IDH1 and IDH2 mutations in different histologic
subtypes and WHO grading gliomas in a sample from Northern Brazil.
Genet Mol Res. 14:6533–6542. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Waitkus MS, Diplas BH and Yan H:
Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol. Jul
16–2015.(Epub ahead of print). pii: nov136. PubMed/NCBI
|
42
|
Chan SM, Thomas D, Corces-Zimmerman MR,
Xavy S, Rastogi S, Hong WJ, Zhao F, Medeiros BC, Tyvoll DA and
Majeti R: Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2
dependence in acute myeloid leukemia. Nat Med. 21:178–184. 2015.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Aref S, Kamel Areida el S, Abdel Aaal MF,
Adam OM, El-Ghonemy MS, El-Baiomy MA and Zeid TA: Prevalence and
clinical effect of IDH1 and IDH2 mutations among cytogenetically
normal acute myeloid leukemia patients. Clin Lymphoma Myeloma Leuk.
15:550–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu WR, Tian MX, Jin L, Yang LX, Ding ZB,
Shen YH, Peng YF, Zhou J, Qiu SJ, Dai Z, et al: High expression of
5-hydroxymethylcytosine and isocitrate dehydrogenase 2 is
associated with favorable prognosis after curative resection of
hepatocellular carcinoma. J Exp Clin Cancer Res. 33:322014.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Lv Q, Xing S, Li Z, Li J, Gong P, Xu X,
Chang L, Jin X, Gao F, Li W, et al: Altered expression levels of
IDH2 are involved in the development of colon cancer. Exp Ther Med.
4:801–806. 2012.PubMed/NCBI
|
46
|
Simeonidis S, Stauber D, Chen G,
Hendrickson WA and Thanos D: Mechanisms by which IkappaB proteins
control NF-kappaB activity. Proc Natl Acad Sci USA. 96:49–54. 1999.
View Article : Google Scholar : PubMed/NCBI
|