1
|
Park JR, Bagatell R, London WB, Maris JM,
Cohn SL and Mattay KK: Children's Oncology Group's 2013 blueprint
for research: Neuroblastoma. Pediatr Blood Cancer. 60:985–993.
2013. View Article : Google Scholar
|
2
|
Ribatti D, Marimpietri D, Pastorino F,
Brignole C, Nico B, Vacca A and Ponzoni M: Angiogenesis in
neuroblastoma. Ann NY Acad Sci. 1028:133–142. 2004. View Article : Google Scholar
|
3
|
Ribatti D: Anti-angiogenesis in
neuroblastoma. Crit Rev Oncol Hematol. 86:212–221. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Eggert A, Ikegaki N, Kwiatkowski J, Zhao
H, Brodeur GM and Himelstein BP: High-level expression of
angiogenic factors is associated with advanced tumor stage in human
neuroblastomas. Clin Cancer Res. 6:1900–1908. 2000.PubMed/NCBI
|
5
|
Choudhury SR, Karmakar S, Banik NL and Ray
SK: Targeting angiogenesis for controlling neuroblastoma. J Oncol.
2012:7820202012.
|
6
|
Shusterman S and Maris JM: Prospects for
therapeutic inhibition of neuroblastoma angiogenesis. Cancer Lett.
228:171–179. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Megison ML, Gillory LA and Beierle EA:
Cell survival signaling in neuroblastoma. Anticancer Agents Med
Chem. 13:563–575. 2013. View Article : Google Scholar :
|
8
|
Pistoia V, Bianchi G, Borgonovo G and
Raffaghello L: Cytokines in neuroblastoma: From pathogenesis to
treatment. Immunotherapy. 3:895–907. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Neuschäfer-Rube F, Pathe-Neuschäfer-Rube
A, Hippenstiel S, Kracht M and Püschel GP: NF-κB-dependent IL-8
induction by prostaglandin E2 receptors EP1
and EP4. Br J Pharmacol. 168:704–717. 2013. View Article : Google Scholar
|
10
|
Finotti A, Borgatti M, Bezzerri V, Nicolis
E, Lampronti I, Dechecchi M, Mancini I, Cabrini G, Saviano M,
Avitabile C, et al: Effects of decoy molecules targeting NF-kappaB
transcription factors in cystic fibrosis IB3-1 cells: Recruitment
of NF-kappaB to the IL-8 gene promoter and transcription of the
IL-8 gene. Artif DNA PNA XNA. 3:97–296. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Khanjani S, Terzidou V, Johnson MR and
Bennett PR: NFκ B and AP-1 drive human myometrial IL8 expression.
Mediators Inflamm. 2012:5049522012. View Article : Google Scholar
|
12
|
Bezzerri V, Borgatti M, Finotti A,
Tamanini A, Gambari R and Cabrini G: Mapping the transcriptional
machinery of the IL-8 gene in human bronchial epithelial cells. J
Immunol. 187:6069–6081. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wei T, Xu N, Meisgen F, Ståhle M, Sonkoly
E and Pivarcsi A: Interleukin-8 is regulated by miR-203 at the
posttranscriptional level in primary human keratinocytes. Eur J
Dermatol. Apr 19–2013.Epub ahead of print.
|
14
|
Perng DW, Yang DM, Hsiao YH, Lo T, Lee OK,
Wu MT, Wu YC and Lee YC: miRNA-146a expression positively regulates
tumor necrosis factor-α-induced interleukin-8 production in
mesenchymal stem cells and differentiated lung epithelial-like
cells. Tissue Eng Part A. 18:2259–2267. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chuang TD, Luo X, Panda H and Chegini N:
miR-93/106b and their host gene, MCM7, are differentially expressed
in leiomy-omas and functionally target F3 and IL-8. Mol Endocrinol.
26:1028–1042. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou R, Li X, Hu G, Gong AY, Drescher KM
and Chen XM: miR-16 targets transcriptional corepressor SMRT and
modulates NF-kappaB-regulated transactivation of interleukin-8
gene. PLoS One. 7:e307722012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bhattacharyya S, Balakathiresan NS,
Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB
and Biswas R: Elevated miR-155 promotes inflammation in cystic
fibrosis by driving hyperexpression of interleukin-8. J Biol Chem.
286:11604–11615. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bhaumik D, Scott GK, Schokrpur S, Patil
CK, Orjalo AV, Rodier F, Lithgow GJ and Campisi J: MicroRNAs
miR-146a/b negatively modulate the senescence-associated
inflammatory mediators IL-6 and IL-8. Aging. 1:402–411. 2009.
View Article : Google Scholar
|
19
|
Khan FH, Pandian V, Ramraj S, Aravindan S,
Herman TS and Aravindan N: Reorganization of metastamiRs in the
evolution of metastatic aggressive neuroblastoma cells. BMC
Genomics. 16:5012015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen L, Li ZY, Xu SY, Zhang XJ, Zhang Y,
Luo K and Li WP: Upregulation of miR-107 inhibits glioma
angiogenesis and VEGF expression. Cell Mol Neurobiol. Jun
18–2015.Epub ahead of print.
|
21
|
Tsuchiya M, Kumar P, Bhattacharyya S,
Chattoraj S, Srivastava M, Pollard HB and Biswas R: Differential
regulation of inflammation by inflammatory mediators in cystic
fibrosis lung epithelial cells. J Interferon Cytokine Res.
33:121–129. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cabrini G, Fabbri E, Lo Nigro C, Dechecchi
MC and Gambari R: Regulation of expression of
O6-methylguanine-DNA methyltransferase and the treatment
of glioblastoma (Review). Int J Oncol. 47:417–428. 2015.PubMed/NCBI
|
23
|
Bianchi N, Finotti A, Ferracin M,
Lampronti I, Zuccato C, Breveglieri G, Brognara E, Fabbri E,
Borgatti M, Negrini M, et al: Increase of microRNA-210, decrease of
raptor gene expression and alteration of mammalian target of
rapamycin regulated proteins following mithramycin treatment of
human erythroid cells. PLoS One. 10:e01215672015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sun K and Lai EC: Adult-specific functions
of animal micro-RNAs. Nat Rev Genet. 14:535–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Berindan-Neagoe I, Monroig PC, Pasculli B
and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis
and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Adams BD, Kasinski AL and Slack FJ:
Aberrant regulation and function of microRNAs in cancer. Curr Biol.
24:R762–R776. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Piva R, Spandidos DA and Gambari R: From
microRNA functions to microRNA therapeutics: Novel targets and
novel drugs in breast cancer research and treatment (Review). Int J
Oncol. 43:985–994. 2013.PubMed/NCBI
|
29
|
Fabbri E, Borgatti M, Montagner G, Bianchi
N, Finotti A, Lampronti I, Bezzerri V, Dechecchi MC, Cabrini G and
Gambari R: Expression of microRNA-93 and interleukin-8 during
Pseudomonas aeruginosa-mediated induction of proinflammatory
responses. Am J Respir Cell Mol Biol. 50:1144–1155. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Long J, Wang Y, Wang W, Chang BH and
Danesh FR: Identification of microRNA-93 as a novel regulator of
vascular endothelial growth factor in hyperglycemic conditions. J
Biol Chem. 285:23457–23465. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fang L, Deng Z, Shatseva T, Yang J, Peng
C, Du WW, Yee AJ, Ang LC, He C, Shan SW, et al: MicroRNA miR-93
promotes tumor growth and angiogenesis by targeting integrin-β8.
Oncogene. 30:806–821. 2011. View Article : Google Scholar
|
32
|
Sugimoto T, Tatsumi E, Kemshead JT, Helson
L, Green AA and Minowada J: Determination of cell surface membrane
antigens common to both human neuroblastoma and leukemia-lymphoma
cell lines by a panel of 38 monoclonal antibodies. J Natl Cancer
Inst. 73:51–57. 1984.PubMed/NCBI
|
33
|
Borgatti M, Mancini I, Bianchi N, Guerrini
A, Lampronti I, Rossi D, Sacchetti G and Gambari R: Bergamot
(Citrus bergamia Risso) fruit extracts and identified components
alter expression of interleukin 8 gene in cystic fibrosis bronchial
epithelial cell lines. BMC Biochem. 12:152011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Penolazzi L, Lambertini E, Tavanti E,
Torreggiani E, Vesce F, Gambari R and Piva R: Evaluation of
chemokine and cytokine profiles in osteoblast progenitors from
umbilical cord blood stem cells by BIO-PLEX technology. Cell Biol
Int. 32:320–325. 2008. View Article : Google Scholar
|
35
|
Brognara E, Fabbri E, Bazzoli E, Montagner
G, Ghimenton C, Eccher A, Cantù C, Manicardi A, Bianchi N, Finotti
A, et al: Uptake by human glioma cell lines and biological effects
of a peptide-nucleic acids targeting miR-221. J Neurooncol.
118:19–28. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hofacker IL: Vienna RNA secondary
structure server. Nucleic Acids Res. 31:3429–3431. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kent WJ, Hsu F, Karolchik D, Kuhn RM,
Clawson H, Trumbower H and Haussler D: Exploring relationships and
mining data with the UCSC Gene Sorter. Genome Res. 15:737–741.
2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Griffiths-Jones S, Grocock RJ, van Dongen
S, Bateman A and Enright AJ: miRBase: MicroRNA sequences, targets
and gene nomenclature. Nucleic Acids Res. 34:D140–D144. 2006.
View Article : Google Scholar :
|
39
|
Kozomara A and Griffiths-Jones S: miRBase:
Annotating high confidence microRNAs using deep sequencing data.
Nucleic Acids Res. 42:D68–D73. 2014. View Article : Google Scholar :
|
40
|
Betel D, Wilson M, Gabow A, Marks DS and
Sander C: The http://microRNA.orgurisimplemicroRNA.org resource:
Targets and expression. Nucleic Acids Res. 36(Database): D149–D153.
2008. View Article : Google Scholar
|
41
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Mol Biol Dweep H, Gretz N and Sticht C:
miRWalk database for miRNA-target interactions. Methods.
1182:289–305. 2014.
|
43
|
Fabbri E, Manicardi A, Tedeschi T, Sforza
S, Bianchi N, Brognara E, Finotti A, Breveglieri G, Borgatti M,
Corradini R, et al: Modulation of the biological activity of
microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem.
6:2192–2202. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gambari R, Fabbri E, Borgatti M, Lampronti
I, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R and
Corradini R: Targeting microRNAs involved in human diseases: A
novel approach for modification of gene expression and drug
development. Biochem Pharmacol. 82:1416–1429. 2011. View Article : Google Scholar : PubMed/NCBI
|